Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Inorg Chem ; 63(19): 8556-8566, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38684718

RESUMEN

One of the crucial metabolic processes for both plant and animal kingdoms is the oxidation of the amino acid tryptophan (TRP) that regulates plant growth and controls hunger and sleeping patterns in animals. Here, we report revolutionary insights into how this process can be crucially affected by interactions with metal oxide nanoparticles (NPs), creating a toolbox for a plethora of important biomedical and agricultural applications. Molecular mechanisms in TRP-NP interactions were revealed by NMR and optical spectroscopy for ceria and titania and by X-ray single-crystal study and a computational study of model TRP-polyoxometalate complexes, which permitted the visualization of the oxidation mechanism at an atomic level. Nanozyme activity, involving concerted proton and electron transfer to the NP surface for oxides with a high oxidative potential, like CeO2 or WO3, converted TRP in the first step into a tricyclic organic acid belonging to the family of natural plant hormones, auxins. TiO2, a much poorer oxidant, was strongly binding TRP without concurrent oxidation in the dark but oxidized it nonspecifically via the release of reactive oxygen species (ROS) in daylight.


Asunto(s)
Nanopartículas del Metal , Triptófano , Cerio/química , Nanopartículas del Metal/química , Modelos Moleculares , Oxidación-Reducción , Óxidos/química , Titanio/química , Triptófano/química , Triptófano/metabolismo
2.
Anal Chem ; 90(7): 4338-4347, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29498509

RESUMEN

With advances in nanotechnology, particles with various size, shape, surface chemistry, and composition can be easily produced. Nano- and microparticles have been extensively explored in many industrial and clinical applications. Ensuring that the particles themselves are not possessing toxic effects to the biological system is of paramount importance. This paper describes a proof of concept method, in which a microfluidic system is used in conjunction with a cell microarray technique aiming to streamline the analysis of particle-cell interaction in a high throughput manner. Polymeric microparticles, with different particle surface functionalities, were first used to investigate the efficiency of particle-cell adhesion under dynamic flow. Silver nanoparticles (AgNPs, 10 nm in diameter) perfused at different concentrations (0 to 20 µg/mL) in parallel streams over the cell microarray exhibited a higher toxicity compared to the static culture in the 96-well-plate format. This developed microfluidic system can be easily scaled up to accommodate a larger number of microchannels for high throughput analysis of the potential toxicity of a wide range of particles in a single experiment.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Nanopartículas del Metal/química , Técnicas Analíticas Microfluídicas , Plata/química , Adhesión Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Diseño de Equipo , Humanos , Estructura Molecular , Tamaño de la Partícula , Plata/farmacología , Propiedades de Superficie
3.
Anal Chem ; 89(16): 8228-8232, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28691496

RESUMEN

Quantification of cell-associated nanoparticles (NPs) is a paramount question in both nanomedicine and nanotoxicology. Inductively coupled plasma mass spectrometry is a well-established method to resolve cell-associated (metal) NPs in bulk cell populations, however, such analysis at single cell level remains a challenge. Here we used mass cytometry, a technique that combines single cell analysis and time-of-flight mass spectrometry, to quantitatively analyze extra- and intracellular silver (Ag) in individual Ag NP exposed human T-lymphocytes. The results revealed significant population heterogeneity: for example, in lymphocytes exposed to 3 µg of 30 nm branched polyethylene imine coated Ag NPs/mL the extracellularly bound Ag varied from 79 to 560 fg and cellular uptake from 17 to 121 fg. Similar amplitude of heterogeneity was observed in cells exposed to various doses of Ag NPs with other sizes and surface coatings, demonstrating the importance of single cell analysis when studying NP-cell interactions. Although mass cytometry has some shortcomings such as inability to analyze potential transformation or dissolution of NPs in cells, we consider this method as the most promising for quantitative assessment of cell-NP interaction at single cell level.


Asunto(s)
Nanopartículas del Metal/análisis , Plata/análisis , Linfocitos T/química , Humanos , Células Jurkat , Espectrometría de Masas/métodos , Nanopartículas del Metal/química , Tamaño de la Partícula , Plata/química , Análisis de la Célula Individual/métodos
4.
Small ; 13(29)2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28570785

RESUMEN

There is a pressing need to develop more effective therapeutics to fight cancer. An idyllic chemotherapeutic is expected to overcome drug resistance of tumors and minimize harmful side effects to healthy tissues. Antibody-functionalized porous silicon nanoparticles loaded with a combination of chemotherapy drug and gold nanoclusters (AuNCs) are developed. These nanocarriers are observed to selectively deliver both payloads, the chemotherapy drug and AuNCs, to human B cells. The accumulation of AuNCs to target cells and subsequent exposure to an external electromagnetic field in the microwave region render them more susceptible to the codelivered drug. This approach represents a targeted two-stage delivery nanocarrier that benefits from a dual therapeutic action that results in enhanced cytotoxicity.


Asunto(s)
Oro/química , Nanopartículas/química , Neoplasias/terapia , Silicio/química , Sistemas de Liberación de Medicamentos/métodos , Porosidad
5.
Arch Toxicol ; 91(6): 2315-2330, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27942788

RESUMEN

The rapid development of nanotechnologies and increased production and use of nanomaterials raise concerns about their potential toxic effects for human health and environment. To evaluate the biological effects of nanomaterials, a set of reliable and reproducible methods and development of standard operating procedures (SOPs) is required. In the framework of the European FP7 NanoValid project, three different cell viability assays (MTS, ATP content, and caspase-3/7 activity) with different readouts (absorbance, luminescence and fluorescence) and two immune assays (ELISA of pro-inflammatory cytokines IL1-ß and TNF-α) were evaluated by inter-laboratory comparison. The aim was to determine the suitability and reliability of these assays for nanosafety assessment. Studies on silver and copper oxide nanoparticles (NPs) were performed, and SOPs for particle handling, cell culture, and in vitro assays were established or adapted. These SOPs give precise descriptions of assay procedures, cell culture/seeding conditions, NPs/positive control preparation and dilutions, experimental well plate preparation, and evaluation of NPs interference. The following conclusions can be highlighted from the pan-European inter-laboratory studies: Testing of NPs interference with the toxicity assays should always be conducted. Interference tests should be designed as close as possible to the cell exposure conditions. ATP and MTS assays gave consistent toxicity results with low inter-laboratory variability using Ag and CuO NPs and different cell lines and therefore, could be recommended for further validation and standardization. High inter-laboratory variability was observed for Caspase 3/7 assay and ELISA for IL1-ß and TNF-α measurements.


Asunto(s)
Cobre/toxicidad , Citocinas/metabolismo , Laboratorios/normas , Nanopartículas del Metal/toxicidad , Plata/toxicidad , Pruebas de Toxicidad/normas , Bioensayo/métodos , Bioensayo/normas , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cobre/química , Europa (Continente) , Humanos , Nanopartículas del Metal/química , Tamaño de la Partícula , Reproducibilidad de los Resultados , Plata/química , Propiedades de Superficie , Pruebas de Toxicidad/métodos
6.
Chem Res Toxicol ; 28(5): 1023-35, 2015 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-25781053

RESUMEN

We have revealed a connection between DNA-nanoparticle (NP) binding and in vitro DNA damage induced by citrate- and branched polyethylenimine-coated silver nanoparticles (c-AgNPs and b-AgNPs) as well as graphene oxide (GO) nanosheets. All three types of nanostructures triggered an early onset of DNA melting, where the extent of the melting point shift depends upon both the type and concentration of the NPs. Specifically, at a DNA/NP weight ratio of 1.1/1, the melting temperature of lambda DNA dropped from 94 °C down to 76 °C, 60 °C, and room temperature for GO, c-AgNPs and b-AgNPs, respectively. Consistently, dynamic light scattering revealed that the largest changes in DNA hydrodynamic size were also associated with the binding of b-AgNPs. Upon introduction to cells, b-AgNPs also exhibited the highest cytotoxicity, at the half-maximal inhibitory (IC50) concentrations of 3.2, 2.9, and 5.2 mg/L for B and T-lymphocyte cell lines and primary lymphocytes, compared to the values of 13.4, 12.2, and 12.5 mg/L for c-AgNPs and 331, 251, and 120 mg/L for GO nanosheets, respectively. At cytotoxic concentrations, all NPs elicited elevated genotoxicities via the increased number of micronuclei in the lymphocyte cells. However, b-AgNPs also induced micronuclei at subtoxic concentrations starting from 0.1 mg/L, likely due to their stronger cellular adhesion and internalization, as well as their subsequent interference with normal DNA synthesis or chromosome segregation during the cell cycle. This study facilitates our understanding of the effects of NP chemical composition, surface charge, and morphology on DNA stability and genotoxicity, with implications ranging from nanotoxicology to nanobiotechnology and nanomedicine.


Asunto(s)
ADN/genética , Grafito/toxicidad , Nanopartículas del Metal/toxicidad , Mutágenos/toxicidad , Desnaturalización de Ácido Nucleico/efectos de los fármacos , Plata/toxicidad , Bacteriófago lambda/química , Bacteriófago lambda/genética , Línea Celular , Supervivencia Celular/efectos de los fármacos , ADN/química , Daño del ADN/efectos de los fármacos , ADN Viral/química , ADN Viral/genética , Humanos , Células Jurkat , Nanopartículas del Metal/ultraestructura , Pruebas de Micronúcleos
7.
Environ Sci Technol ; 49(2): 1105-12, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25563693

RESUMEN

Metal oxide nanoparticles (MOx NPs) are used for a host of applications, such as electronics, cosmetics, construction, and medicine, and as a result, the safety of these materials to humans and the environment is of considerable interest. A prior study of 24 MOx NPs in mammalian cells revealed that some of these materials show hazard potential. Here, we report the growth inhibitory effects of the same series of MOx NPs in the bacterium Escherichia coli and show that toxicity trends observed in E. coli parallel those seen previously in mammalian cells. Of the 24 materials studied, only ZnO, CuO, CoO, Mn2O3, Co3O4, Ni2O3, and Cr2O3 were found to exert significant growth inhibitory effects; these effects were found to relate to membrane damage and oxidative stress responses in minimal trophic media. A correlation of the toxicological data with physicochemical parameters of MOx NPs revealed that the probability of a MOx NP being toxic increases as the hydration enthalpy becomes less negative and as the conduction band energy approaches those of biological molecules. These observations are consistent with prior results observed in mammalian cells, revealing that mechanisms of toxicity of MOx NPs are consistent across two very different taxa. These results suggest that studying nanotoxicity in E. coli may help to predict toxicity patterns in higher organisms.


Asunto(s)
Escherichia coli/efectos de los fármacos , Nanopartículas del Metal/química , Nanopartículas del Metal/toxicidad , Antiinfecciosos/química , Membrana Celular/efectos de los fármacos , Concentración 50 Inhibidora , Pruebas de Sensibilidad Microbiana , Estrés Oxidativo/efectos de los fármacos , Óxidos/farmacología , Modelos de Riesgos Proporcionales , Especies Reactivas de Oxígeno/química
8.
Acc Chem Res ; 46(3): 823-33, 2013 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-23148404

RESUMEN

Some researchers consider nanotechnology the next industrial revolution, and consumer products and a variety of industries increasingly use synthetic nanoparticles. In this Account, we review the initial accomplishments of nanoecotoxicology, a discipline that is just a decade old. This new subdiscipline of ecotoxicology faces two important and challenging problems: the analysis of the safety of nanotechnologies in the natural environment and the promotion of sustainable development while mitigating the potential pitfalls of innovative nanotechnologies. In this Account, we provide a snapshot of the publicly available scientific information regarding the ecotoxicity of engineered nanoparticles. We pay special attention to information relevant to aquatic freshwater species commonly used for risk assessment and regulation. Just as the development of ecotoxicology has lagged behind that of toxicology, nanoecotoxicological research has developed much more slowly than nanotoxicology. Although the first nanotoxicolology papers were published in 1990s, the first nanoecotoxicology papers came out in 2006. A meta-analysis of scientific publications covering different environmental impacts of nanomaterials showed that the importance of research into the environmental impact of nanotechnology has gradually increased since 2005. Now the most frequently cited papers in the environmental disciplines are often those that focus on synthetic nanoparticles. The first nanoecotoxicology studies focused on adverse effects of nanoparticles on fish, algae and daphnids, which are ecotoxicological model organisms for classification and labeling of chemicals (these model organisms are also used in the EU chemical safety policy adopted in 2007: Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH)). Based on our experience, we propose a multitrophic battery of nanoecotoxicological testing that includes particle-feeding and a priori particle-"proof" prokaryotic and eukaryotic organisms at different food-chain levels. Using this battery of selected test organisms, we demonstrated that TiO2 nanoparticles were toxic to algae and that ZnO and CuO nanoparticles were toxic to several aquatic invertebrate test species. Thus, one single biotest cannot predict the ecotoxicological effects of chemicals/nanoparticles, and researchers should use several tests instead. Moreover, produced nanoparticles usually vary in features such as size, shape, and coating; therefore, a single nanoparticle species may actually include many entities with different physicochemical properties. An ecotoxicity analysis of all these variants would require a huge number of laboratory tests. To address these issues, high throughput bioassays and computational (QSAR) models that serve as powerful alternatives to conventional (eco)toxicity testing must be implemented to handle both the diversity of nanomaterials and the complexity of ecosystems.


Asunto(s)
Nanopartículas/toxicidad , Investigación/tendencias , Animales , Eutrofización , Modelos Biológicos , Nanopartículas/química , Investigación/normas , Seguridad
9.
FEMS Microbes ; 5: xtad022, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38213394

RESUMEN

Antimicrobial surface materials potentially prevent pathogen transfer from contaminated surfaces. Efficacy of such surfaces is assessed by standard methods using wet exposure conditions known to overestimate antimicrobial activity compared to dry exposure. Some dry test formats have been proposed but semi-dry exposure scenarios e.g. oral spray or water droplets exposed to ambient environment, are less studied. We aimed to determine the impact of environmental test conditions on antibacterial activity against the model species Escherichia coli and Staphylococcus aureus. Surfaces based on copper, silver, and quaternary ammonium with known or claimed antimicrobial properties were tested in conditions mimicking microdroplet spray or larger water droplets exposed to variable relative air humidity in the presence or absence of organic soiling. All the environmental parameters critically affected antibacterial activity of the tested surfaces from no effect in high-organic dry conditions to higher effect in low-organic humid conditions but not reaching the effect size demonstrated in the ISO 22169 wet format. Copper was the most efficient antibacterial surface followed by silver and quaternary ammonium based coating. Antimicrobial testing of surfaces using small droplet contamination in application-relevant conditions could therefore be considered as one of the worst-case exposure scenarios relevant to dry use surfaces.

10.
RSC Adv ; 14(18): 12337-12348, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38633502

RESUMEN

Photocatalysis is a promising treatment method to remove pollutants from water. TiO2-P25 is a commercially available model photocatalyst, which very efficiently degrades organic pollutants under UVA light exposure. However, the collection and the recovery of TiO2-P25 from cleaned water poses significant difficulties, severely limiting its usability. To address this challenge, we have prepared a sintered mixture of TiO2-P25 nanomaterials and magnetic CuFe2O4-Fe2O3 nanocomposites. The mixture material was shown to contain spinel ferrite, hematite and maghemite structures, copper predominantly in Cu2+ and iron predominantly in Fe3+ state. The CuFe2O4-Fe2O3 and TiO2-P25 mixture demonstrated magnetic collectability from processed water and photocatalytic activity, which was evidenced through the successful photodegradation of the herbicide 2,4-D. Our findings suggest that the sintered mixture of CuFe2O4-Fe2O3 and TiO2-P25 holds a promise for improving photocatalytic water treatment, with the potential to overcome current photocatalyst recovery issues.

11.
Arch Toxicol ; 87(7): 1181-200, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23728526

RESUMEN

Nanoparticles (NPs) of copper oxide (CuO), zinc oxide (ZnO) and especially nanosilver are intentionally used to fight the undesirable growth of bacteria, fungi and algae. Release of these NPs from consumer and household products into waste streams and further into the environment may, however, pose threat to the 'non-target' organisms, such as natural microbes and aquatic organisms. This review summarizes the recent research on (eco)toxicity of silver (Ag), CuO and ZnO NPs. Organism-wise it focuses on key test species used for the analysis of ecotoxicological hazard. For comparison, the toxic effects of studied NPs toward mammalian cells in vitro were addressed. Altogether 317 L(E)C50 or minimal inhibitory concentrations (MIC) values were obtained for algae, crustaceans, fish, bacteria, yeast, nematodes, protozoa and mammalian cell lines. As a rule, crustaceans, algae and fish proved most sensitive to the studied NPs. The median L(E)C50 values of Ag NPs, CuO NPs and ZnO NPs (mg/L) were 0.01, 2.1 and 2.3 for crustaceans; 0.36, 2.8 and 0.08 for algae; and 1.36, 100 and 3.0 for fish, respectively. Surprisingly, the NPs were less toxic to bacteria than to aquatic organisms: the median MIC values for bacteria were 7.1, 200 and 500 mg/L for Ag, CuO and ZnO NPs, respectively. In comparison, the respective median L(E)C50 values for mammalian cells were 11.3, 25 and 43 mg/L. Thus, the toxic range of all the three metal-containing NPs to target- and non-target organisms overlaps, indicating that the leaching of biocidal NPs from consumer products should be addressed.


Asunto(s)
Cobre/toxicidad , Contaminantes Ambientales/toxicidad , Nanopartículas del Metal/toxicidad , Plata/toxicidad , Pruebas de Toxicidad , Óxido de Zinc/toxicidad , Animales , Relación Dosis-Respuesta a Droga , Monitoreo del Ambiente , Humanos , Medición de Riesgo , Especificidad de la Especie , Pruebas de Toxicidad/métodos
12.
Heliyon ; 9(9): e20067, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37810009

RESUMEN

Due to the growing interest towards reducing the number of potentially infectious agents on critical high-touch surfaces, the popularity of antimicrobially and antivirally active surfaces, including textiles, has increased. The goal of this study was to create antiviral textiles by spray-depositing three different nanomaterials, two types of CeO2 nanoparticles and quaternary ammonium surfactant CTAB loaded SiO2 nanocontainers, onto the surface of a knitted polyester textile and assess their antiviral activity against two coronaviruses, porcine transmissible gastroenteritis virus (TGEV) and severe acute respiratory syndrome virus (SARS CoV-2). Antiviral testing was carried out in small droplets in semi-dry conditions and in the presence of organic soiling, to mimic aerosol deposition of viruses onto the textiles. In such conditions, SARS CoV-2 stayed infectious at least for 24 h and TGEV infected cells even after 72h of semi-dry deposition suggesting that textiles exhibiting sufficient antiviral activity before or at 24 h, can be considered promising. The antiviral efficacy of nanomaterial-deposited textiles was compared with the activity of the same nanomaterials in colloidal form and with positive control textiles loaded with copper nitrate and CTAB. Our results indicated that after deposition onto the textile, CeO2 nanoparticles lost most of their antiviral activity, but antiviral efficacy of CTAB-loaded SiO2 nanocontainers was retained also after deposition. Copper nitrate deposited textile that was used as a positive control, showed relatively high antiviral activity as expected. However, as copper was effectively washed away from the textile already during 1 h, the use of copper for creating antiviral textiles would be impractical. In summary, our results indicated that antiviral activity of textiles cannot be predicted from antiviral efficacy of the deposited compounds in colloid and attention should be paid on prolonged efficacy of antivirally coated textiles.

13.
Environ Sci Technol ; 46(4): 2398-405, 2012 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-22148163

RESUMEN

By exploiting a genome-wide collection of bacterial single-gene deletion mutants, we have studied the toxicological pathways of a 60-nm cationic (amino-functionalized) polystyrene nanomaterial (PS-NH(2)) in bacterial cells. The IC(50) of commercially available 60 nm PS-NH(2) was determined to be 158 µg/mL, the IC(5) is 108 µg/mL, and the IC(90) is 190 µg/mL for the parent E. coli strain of the gene deletion library. Over 4000 single nonessential gene deletion mutants of Escherichia coli were screened for the growth phenotype of each strain in the presence and absence of PS-NH(2). This revealed that genes clusters in the lipopolysaccharide biosynthetic pathway, outer membrane transport channels, ubiquinone biosynthetic pathways, flagellar movement, and DNA repair systems are all important to how this organism responds to cationic nanomaterials. These results, coupled with those from confirmatory assays described herein, suggest that the primary mechanisms of toxicity of the 60-nm PS-NH(2) nanomaterial in E. coli are destabilization of the outer membrane and production of reactive oxygen species. The methodology reported herein should prove generally useful for identifying pathways that are involved in how cells respond to a broad range of nanomaterials and for determining the mechanisms of cellular toxicity of different types of nanomaterials.


Asunto(s)
Escherichia coli/efectos de los fármacos , Genoma Bacteriano/efectos de los fármacos , Nanoestructuras/toxicidad , Poliestirenos/toxicidad , Aminas/química , Aminas/toxicidad , Membrana Celular/efectos de los fármacos , Escherichia coli/fisiología , Eliminación de Gen , Nanoestructuras/química , Poliestirenos/química , Especies Reactivas de Oxígeno/metabolismo
14.
Nanomaterials (Basel) ; 12(23)2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36500958

RESUMEN

History has demonstrated that the uncontrolled fast thriving of potentially pathogenic microorganisms may lead to serious consequences and, thus, the approaches helping to control the microbial numbers in infectional hot-spots are necessary [...].

15.
Chemosphere ; 309(Pt 1): 136599, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36167206

RESUMEN

Lack of microplastics (MP) toxicity studies involving environmentally relevant concentrations and exposure times is concerning. Here we analyzed the potential adverse effects of low density polyethylene (LDPE) MP at environmentally relevant concentration in sub-chronic exposure to two amphipods Gmelinoides fasciatus and Gammarus lacustris, species that naturally compete with each other for their habitats. 14-day exposure to 2 µg/L (8 particles/L corresponding to low exposure) and 2 mg/L (∼8400 particles/L, corresponding to high exposure) of 53-100 µm LDPE MP were used to assess ingestion and egestion of MP, evaluate its effects on amphipod mortality, swimming ability and oxidative stress level. Both amphipod species were effectively ingesting and egesting LDPE MP. On the average, 0.8 and 2.5 MP particles were identified in the intestines of each amphipod exposed to 2 µg/L and 2 mg/L LDPE MP, respectively. Therefore, intestinal MP after 14-day exposure did not fully reflect the differences in LDPE MP exposure concentrations. Increased mortality of both amphipods was observed at 2 mg/L LDPE MP and in case of G. lacustris also at 2 µg/L exposure. The effect of LDPE on swimming activity was observed only in case of G. fasciatus. Oxidative stress marker enzymes SOD, GPx and reduced glutathione GSH varied according to amphipod species and LDPE MP concentration. In general G. lacustris was more sensitive towards LDPE MP induced oxidative stress. Overall, the results suggested that in MP polluted environments, G. lacustris may lose its already naturally low competitiveness and become overcompeted by other more resistant species. The fact that in the sub-chronic foodborne exposure to environmentally relevant and higher LDPE MP concentrations all the observed toxicological endpoints were affected refers to the potential of MP to affect and disrupt aquatic communities in the longer perspective.


Asunto(s)
Anfípodos , Contaminantes Químicos del Agua , Animales , Microplásticos/toxicidad , Plásticos/toxicidad , Polietileno/toxicidad , Contaminantes Químicos del Agua/análisis , Glutatión/farmacología , Superóxido Dismutasa
16.
Sci Total Environ ; 853: 158560, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36087672

RESUMEN

Plastics contamination in the environment is a major concern. Risk assessment of micro- and nanoplastics (MPL and NPL) poses significant challenges due to MPL and NPL heterogeneity regarding compositional polymers, particle sizes and morphologies in the environment. Yet, there exists considerable toxicological literature on commercial polystyrene (PS) micro- and nanospheres. Although such particles do not directly represent the environmental MPL and NPL, their toxicity data should be used to advance the hazard assessment of plastics. Here, toxicity data of PS micro- and nanospheres for microorganisms, aquatic and terrestrial invertebrates, fish, and higher plants was collected and analyzed. The evaluation of 294 papers revealed that aquatic invertebrates were the most studied organisms, nanosized PS was studied more often than microsized PS, acute exposures prevailed over chronic exposures, the toxicity of PS suspension additives was rarely addressed, and ∼40 % of data indicated no organismal effects of PS. Toxicity mechanisms were mainly studied in fish and nematode Caenorhabditis elegans, providing guidance for relevant studies in higher organisms. Future studies should focus on environmentally relevant plastics concentrations, wide range of organisms, co-exposures with other pollutants, and method development for plastics identification and quantification to fill the gap of bioaccumulation assessment of plastics.


Asunto(s)
Contaminantes Ambientales , Nanosferas , Contaminantes Químicos del Agua , Animales , Poliestirenos/toxicidad , Microplásticos/toxicidad , Nanosferas/toxicidad , Plásticos/toxicidad , Invertebrados , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Organismos Acuáticos
17.
Sci Rep ; 12(1): 18746, 2022 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-36335167

RESUMEN

Nanomaterials are prospective candidates for the elimination of viruses due to their multimodal mechanisms of action. Here, we tested the antiviral potential of a largely unexplored nanoparticle of cerium dioxide (CeO2). Two nano-CeO2 with opposing surface charge, (+) and (-), were assessed for their capability to decrease the plaque forming units (PFU) of four enveloped and two non-enveloped viruses during 1-h exposure. Statistically significant antiviral activity towards enveloped coronavirus SARS-CoV-2 and influenza virus was registered already at 20 mg Ce/l. For other two enveloped viruses, transmissible gastroenteritis virus and bacteriophage φ6, antiviral activity was evidenced at 200 mg Ce/l. As expected, the sensitivity of non-enveloped viruses towards nano-CeO2 was significantly lower. EMCV picornavirus showed no decrease in PFU until the highest tested concentration, 2000 mg Ce/l and MS2 bacteriophage showed slight non-monotonic response to high concentrations of nano-CeO2(-). Parallel testing of antiviral activity of Ce3+ ions and SiO2 nanoparticles allows to conclude that nano-CeO2 activity was neither due to released Ce-ions nor nonspecific effects of nanoparticulates. Moreover, we evidenced higher antiviral efficacy of nano-CeO2 compared with Ag nanoparticles. This result along with low antibacterial activity and non-existent cytotoxicity of nano-CeO2 allow us to propose CeO2 nanoparticles for specific antiviral applications.


Asunto(s)
COVID-19 , Cerio , Nanopartículas del Metal , Nanopartículas , Humanos , Dióxido de Silicio , Antivirales/farmacología , Plata/farmacología , SARS-CoV-2 , Cerio/farmacología , Nanopartículas/toxicidad
18.
Sensors (Basel) ; 11(11): 10502-21, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22346655

RESUMEN

The analysis of (bio)available copper in complex environmental settings, including biological test media, is a challenging task. In this study, we demonstrated the potential of a recombinant Pseudomonas fluorescens-based biosensor for bioavailability analysis of CuSO4 and CuO nanoparticles (nano-CuO) in seventeen different ecotoxicological and microbiologial test media. In parallel, free Cu in these test media was analysed using Cu-ion selective electrode (Cu-ISE). In the case of CuSO4, both free and bioavailable Cu decreased greatly with increasing concentration of organics and phosphates in the tested media. A good correlation between free and bioavailable Cu was observed (r = 0.854, p < 0.01) indicating that the free Cu content in biological test media may be a reasonably good predictor for the toxicity of CuSO4. As a proof, it was demonstrated that when eleven EC50 values for CuSO4 from different organisms in different test media were normalized for the free Cu in these media, the difference in these EC50 values was decreased from 4 to 1.8 orders of magnitude. Thus, toxicity of CuSO4 to these organisms was attributed to the properties of the test media rather than to inherent differences in sensitivity between the test organisms. Differently from CuSO4, the amount of free and bioavailable Cu in nano-CuO spiked media was not significantly correlated with the concentration of organics in the test media. Thus, the speciation of nano-CuO in toxicological test systems was not only determined by the complexation of Cu ions but also by differential dissolution of nano-CuO in different test conditions leading to a new speciation equilibrium. In addition, a substantial fraction of nano-CuO that was not detectable by Cu-ISE (i.e., not present as free Cu-ions) was bioavailable to Cu-biosensor bacteria. Thus, in environmental hazard analysis of (nano) particulate materials, biosensor analysis may be more informative than other analytical techniques. Our results demonstrate that bacterial Cu-biosensors either in combination with other analytical/speciation techniques or on their own, may serve as a rapid (eco)toxicological screening method.


Asunto(s)
Técnicas Biosensibles/métodos , Sulfato de Cobre/química , Cobre/análisis , Medios de Cultivo/química , Electrodos de Iones Selectos , Nanopartículas del Metal/química , Aliivibrio fischeri/efectos de los fármacos , Animales , Anostraca/efectos de los fármacos , Disponibilidad Biológica , Tampones (Química) , Chlorophyta/efectos de los fármacos , Cobre/química , Cobre/farmacología , Cobre/toxicidad , Sulfato de Cobre/farmacología , Sulfato de Cobre/toxicidad , Daphnia/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Concentración 50 Inhibidora , Límite de Detección , Mediciones Luminiscentes , Ensayo de Materiales/métodos , Nanopartículas del Metal/toxicidad , Pseudomonas fluorescens/efectos de los fármacos , Pseudomonas fluorescens/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Tetrahymena thermophila/efectos de los fármacos , Pruebas de Toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/farmacología , Contaminantes Químicos del Agua/toxicidad
19.
Sensors (Basel) ; 11(8): 7865-78, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22164050

RESUMEN

We show that in vitro toxicity assay based on inhibition of the bioluminescence of recombinant Escherichia coli encoding thermostable luciferase from Photorhabdus luminescens is a versatile alternative to Vibrio fischeri Microtox™ test. Performance of two luxCDABE-transformed E. coli MC1061 constructs (pDNlux) and (pSLlux) otherwise identical, but having 100-fold different background luminescence was compared with the performance of V. fischeri. The microplate luminometer and a kinetic Flash-Assay test format was used that differently from Microtox test is also applicable for high throughput analysis. Toxic effects (30-s till 30-min EC(50)) of four heavy metals (Zn, Cd, Hg, Cu) and three organic chemicals (aniline, 3,5-dichloroaniline and 3,5-dichlorophenol) were studied. Both E. coli strains had comparable sensitivity and the respective 30-min EC(50) values highly correlated (log-log R(2) = 0.99; p < 0.01) showing that the sensitivity of the recombinant bacteria towards chemicals analyzed did not depend on the bioluminescence level of the recombinant cells. The most toxic chemical for all used bacterial strains (E. coli, V. fischeri) was mercury whereas the lowest EC(50) values for Hg (0.04-0.05 mg/L) and highest EC(50) values for aniline (1,300-1,700 mg/L) were observed for E. coli strains. Despite of that, toxicity results obtained with both E. coli strains (pSLlux and pDNlux) significantly correlated with V. fischeri results (log-log R(2) = 0.70/0.75; p < 0.05/0.01). The use of amino acids (0.25%) and glucose (0.05%)-supplemented M9 medium instead of leucine-supplemented saline significantly (p < 0.05) reduced the apparent toxicity of heavy metals to both E. coli strains up to three orders of magnitude, but had little or no complexing effect on organic compounds. Thus, P. luminescens luxCDABE-transformed E. coli strains can be successfully used for the acute toxicity screening of various types of organic chemicals and heavy metals and can replace V. fischeri in certain cases where the thermostability of luciferase >30 °C is crucial. The kinetic Flash Assay test format of the bioluminescence inhibition assay facilitates high throughput analysis. The assay medium, especially in case of testing heavy metals should be a compromise: optimal for the viability/luminescence of the recombinant test strain and of minimum complexing potential.


Asunto(s)
Aliivibrio fischeri/metabolismo , Escherichia coli/metabolismo , Photorhabdus/metabolismo , Aciltransferasas/metabolismo , Proteínas Bacterianas/metabolismo , Bioensayo/métodos , Cinética , Luminiscencia , Mercurio/química , Metales Pesados , Nanopartículas , Oxidorreductasas/metabolismo , Factores de Tiempo , Pruebas de Toxicidad/métodos , Microbiología del Agua
20.
Nanomaterials (Basel) ; 11(12)2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34947733

RESUMEN

In the context of healthcare-acquired infections, microbial cross-contamination and the spread of antibiotic resistance, additional passive measures to prevent pathogen carryover are urgently needed. Antimicrobial high-touch surfaces that kill microbes on contact or prevent their adhesion could be considered to mitigate the spread. Here, we demonstrate that photocatalytic nano-ZnO- and nano-ZnO/Ag-based antibacterial surfaces with efficacy of at least a 2.7-log reduction in Escherichia coli and Staphylococcus aureus viability in 2 h can be produced by simple measures using a commercial acrylic topcoat for wood surfaces. We characterize the surfaces taking into account cyclic wear and variable environmental conditions. The light-induced antibacterial and photocatalytic activities of the surfaces are enhanced by short-term cyclic wear, indicating their potential for prolonged effectivity in long-term use. As the produced surfaces are generally more effective at higher relative air humidity and silver-containing surfaces lost their contact-killing properties in dry conditions, it is important to critically evaluate the end-use conditions of materials and surfaces to be tested and select application-appropriate methods for their efficacy assessment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA