Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Aust Occup Ther J ; 69(1): 15-24, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34580881

RESUMEN

INTRODUCTION: Occupational therapy often involves handwriting acquisition practices that include the non-dominant hand when improvements in the dominant hand function are not possible because of trauma or stroke. This study explored whether character tracing and using a pegboard can effectively improve the handwriting of the non-dominant hand. METHODS: A randomised controlled trial involving 60 healthy university students aged ≥18 years was conducted. Participants were randomly assigned to the writing group, peg group or control group. The character recognition rate was evaluated by computer software. Furthermore, character quality and writing speed were evaluated by humans using global legibility scales. Evaluations were performed before the intervention (baseline) and on days 5 and 10 of the intervention. Using the non-dominant hand, the writing group traced characters on paper with a ballpoint pen, and the peg group used a pegboard for 15 min/day for 10 days. RESULTS: Compared with the peg and control groups, the writing group showed significant improvements in the character recognition rate and global legibility scale score. However, the global legibility scale score did not improve to the same level as that achieved with the dominant hand. None of the evaluation scores of the peg group showed significant improvements compared with those of the control group. There were no significant differences in improvements in the writing speed of the writing and peg groups compared with the control group. CONCLUSION: Tracing characters can improve the handwriting ability of the non-dominant hand, but using a pegboard may be less effective. Future research is needed to examine how much practice is necessary to improve the handwriting ability of the non-dominant hand sufficiently.


Asunto(s)
Terapia Ocupacional , Accidente Cerebrovascular , Adolescente , Adulto , Escritura Manual , Humanos
2.
J Neuroinflammation ; 17(1): 106, 2020 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-32264971

RESUMEN

BACKGROUND: To promote understanding of the pathogenesis of cognitive impairment or dementia, we explored the potential interaction between transient cerebral ischemia and amyloid-ß (Aß) infusion in mediating cognitive decline and examined the possible ameliorative effect of angiotensin II type 2 (AT2) receptor activation in vascular smooth muscle cells (VSMC) on this cognitive deficit. METHODS: Adult male wild-type mice (WT) and mice with VSMC-specific AT2 receptor overexpression (smAT2) were subjected to intracerebroventricular (ICV) injection of Aß1-40. Transient cerebral ischemia was induced by 15 min of bilateral common carotid artery occlusion (BCCAO) 24 h after Aß injection. RESULTS: Aß injection in WT induced a cognitive decline, whereas BCCAO did not cause a significant cognitive deficit. In contrast, WT with BCCAO following Aß injection exhibited more marked cognitive decline compared to Aß injection alone, in concert with increases in superoxide anion production, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity, and expression of p22phox, p40phox, monocyte chemoattractant protein (MCP)-1 and interleukin (IL)-1ß in the hippocampus, and upregulation of RAGE (receptor for advanced glycation end product), an Aß transporter. BCCAO following Aß injection further enhanced neuronal pyknosis in the hippocampus, compared with BCCAO or Aß injection alone. In contrast, smAT2 did not show a cognitive decline, increase in oxidative stress, inflammation, and RAGE level or neuronal pyknosis, which were induced by BCCAO with/without Aß injection in WT. CONCLUSIONS: Transient cerebral ischemia might worsen Aß infusion-mediated cognitive decline and vice versa, with possible involvement of amplified oxidative stress and inflammation and impairment of the RAGE-mediated Aß clearance system, contributing to exaggerated neuronal degeneration. AT2 receptor activation in VSMC could play an inhibitory role in this cognitive deficit.


Asunto(s)
Péptidos beta-Amiloides/toxicidad , Cognición/fisiología , Disfunción Cognitiva/etiología , Ataque Isquémico Transitorio/complicaciones , Receptor de Angiotensina Tipo 2/metabolismo , Animales , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Ataque Isquémico Transitorio/metabolismo , Ataque Isquémico Transitorio/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Estrés Oxidativo/fisiología
3.
Kidney Int ; 95(1): 138-148, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30442332

RESUMEN

Vascular calcification is a common finding in atherosclerosis and in patients with chronic kidney disease. The renin-angiotensin system plays a role in the pathogenesis of cardiovascular remodeling. Here, we examined the hypothesis that angiotensin II type 2 receptor (AT2) stimulation has inhibitory effects on phosphate-induced vascular calcification. In vivo, calcification of the thoracic aorta induced by an adenine and high-phosphate diet was markedly attenuated in smooth muscle cell-specific AT2-overexpressing mice (smAT2-Tg) compared with wild-type and AT2-knockout mice (AT2KO). Similarly, mRNA levels of relevant osteogenic and vascular smooth muscle cell marker genes were unchanged in smAT2-Tg mice, while their expression was significantly altered in wild-type mice in response to high dietary phosphate. Ex vivo, sections of thoracic aorta were cultured in media supplemented with inorganic phosphate. Aortic rings from smAT2-Tg mice showed less vascular calcification compared with those from wild-type mice. In vitro, calcium deposition induced by high-phosphate media was markedly attenuated in primary vascular smooth muscle cells derived from smAT2-Tg mice compared with the two other mouse groups. To assess the underlying mechanism, we investigated the effect of PPAR-γ, which we previously reported as one of the possible downstream effectors of AT2 stimulation. Treatment with a PPAR-γ antagonist attenuated the inhibitory effects on vascular calcification observed in smAT2-Tg mice fed an adenine and high-phosphate diet. Our results suggest that AT2 activation represents an endogenous protective pathway against vascular calcification. Its stimulation may efficiently reduce adverse cardiovascular events in patients with chronic kidney disease.


Asunto(s)
Enfermedades de la Aorta/tratamiento farmacológico , Fosfatos/toxicidad , Receptor de Angiotensina Tipo 2/metabolismo , Calcificación Vascular/tratamiento farmacológico , Adenina/toxicidad , Animales , Aorta Torácica/patología , Enfermedades de la Aorta/sangre , Enfermedades de la Aorta/etiología , Enfermedades de la Aorta/patología , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Músculo Liso Vascular/citología , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/patología , PPAR gamma/antagonistas & inhibidores , PPAR gamma/metabolismo , Fosfatos/sangre , Cultivo Primario de Células , Receptor de Angiotensina Tipo 2/agonistas , Receptor de Angiotensina Tipo 2/genética , Diálisis Renal/efectos adversos , Insuficiencia Renal Crónica/sangre , Insuficiencia Renal Crónica/terapia , Calcificación Vascular/sangre , Calcificación Vascular/etiología , Calcificación Vascular/patología
4.
J Pharmacol Exp Ther ; 358(2): 352-8, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27225894

RESUMEN

We investigated the possibility that coadministration of rosuvastatin and compound 21 (C21), a selective angiotensin II type 2 (AT2) receptor agonist, could exert synergistic preventive effects on vascular injury. Vascular injury was induced by polyethylene cuff placement on the femoral artery in 9-week-old male C57BL/6J mice. Mice were treated with rosuvastatin and/or with C21 after cuff placement. Neointima formation was determined 14 days after the operation and cell proliferation, and superoxide anion production and expression of inflammatory cytokines were examined 7 days after cuff placement. Neointima formation was significantly attenuated by the treatment of rosuvastatin (5 mg kg(-1) day(-1)) or C21 (10 µg kg(-1) day(-1)), associated with the decreases in proliferating cell nuclear antigen (PCNA) labeling index, oxidative stress, and the expression of inflammatory markers. Treatment with a noneffective dose of rosuvastatin (0.5 mg kg(-1) day(-1)) plus a low dose of C21 (1 µg kg(-1) day(-1)) inhibited the PCNA labeling index, superoxide anion production, mRNA expressions of NAD(P)H subunits, and mRNA and protein expressions of inflammatory markers associated with marked inhibition of neointima formation. Angiotensin II type 1 (AT1) receptor mRNA expression did not differ the groups. By contrast, AT2 receptor mRNA expression was increased by administration of C21 at the dose of 10 µg kg(-1) day(-1) but not by C21 at the dose of 1 µg kg(-1) day(-1) or rosuvastatin. The combination of rosuvastatin and AT2 receptor agonist exerted synergistic preventive effects on vascular remodeling associated with the decreases in cell proliferation, oxidative stress, and inflammatory reaction. That could be a powerful approach to vascular disease prevention.


Asunto(s)
Receptor de Angiotensina Tipo 2/agonistas , Rosuvastatina Cálcica/farmacología , Remodelación Vascular/efectos de los fármacos , Animales , Sinergismo Farmacológico , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Masculino , Ratones , Neointima/tratamiento farmacológico , Óxido Nítrico Sintasa de Tipo III/genética , Estrés Oxidativo/efectos de los fármacos , Receptor de Angiotensina Tipo 1/genética , Receptor de Angiotensina Tipo 2/genética , Rosuvastatina Cálcica/uso terapéutico
5.
Brain Sci ; 13(3)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36979273

RESUMEN

Mirror therapy (MT) helps stroke survivors recover motor function. Previous studies have reported that an individual's motor imagery ability is related to the areas of brain activity during motor imagery and the effectiveness of motor imagery training. However, the relationship between MT and motor imagery ability and between corticospinal tract excitability during mirror gazing, an important component of MT, and motor imagery ability is unclear. This study determined whether the motor-evoked potential (MEP) amplitude while gazing at the mirror relates to participants' motor imagery abilities. Twenty-four healthy right-handed adults (seven males) were recruited. Transcranial magnetic stimulation was performed while gazing at the mirror, and MEP of the first dorsal interosseous muscle of the right hand were measured. Motor imagery ability was measured using the Kinesthetic and Visual Imagery Questionnaire (KVIQ), which assesses the vividness of motor imagery ability. Additionally, a mental chronometry (MC) task was used to assess time aspects. The results showed a significant moderate correlation between changes in MEP amplitude values while gazing at the mirror, as compared with resting conditions, and assessment scores of KVIQ. This study shows that corticospinal excitability because of mirror gazing may be related to the vividness of motor imagery ability.

6.
Clin Sci (Lond) ; 123(4): 193-203, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22548405

RESUMEN

The RAS (renin-angiotensin system) plays a role not only in the cardiovascular system, including blood pressure regulation, but also in the central nervous system. AngII (angiotensin II) binds two major receptors: the AT(1) receptor (AngII type 1 receptor) and AT(2) receptor (AngII type 2 receptor). It has been recognized that AT(2) receptor activation not only opposes AT(1) receptor actions, but also has unique effects beyond inhibitory cross-talk with AT(1) receptor signalling. Novel pathways beyond the classical actions of RAS, the ACE (angiotensin-converting enzyme)/AngII/AT(1) receptor axis, have been highlighted: the ACE2/Ang-(1-7) [angiotensin-(1-7)]/Mas receptor axis as a new opposing axis against the ACE/AngII/AT(1) receptor axis, novel AngII-receptor-interacting proteins and various AngII-receptor-activation mechanisms including dimer formation. ATRAP (AT(1)-receptor-associated protein) and ATIP (AT(2)-receptor-interacting protein) are well-characterized AngII-receptor-associated proteins. These proteins could regulate the functions of AngII receptors and thereby influence various pathophysiological states. Moreover, the possible cross-talk between PPAR (peroxisome-proliferator-activated receptor)-γ and AngII receptor subtypes is an intriguing issue to be addressed in order to understand the roles of RAS in the metabolic syndrome, and interestingly some ARBs (AT(1)-receptor blockers) have been reported to have an AT(1)-receptor-blocking action with a partial PPAR-γ agonistic effect. These emerging concepts concerning the regulation of AngII receptors are discussed in the present review.


Asunto(s)
PPAR gamma/fisiología , Receptor de Angiotensina Tipo 1/metabolismo , Receptor de Angiotensina Tipo 2/metabolismo , Receptores de Angiotensina/fisiología , Sistema Renina-Angiotensina/fisiología , Proteínas Adaptadoras Transductoras de Señales/fisiología , Antagonistas de Receptores de Angiotensina , Animales , Proteínas Portadoras/fisiología , Proteínas Activadoras de GTPasa/fisiología , Humanos , PPAR gamma/agonistas , Peptidil-Dipeptidasa A/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Transducción de Señal/fisiología , Proteínas Supresoras de Tumor/fisiología
7.
Brain Sci ; 12(12)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36552097

RESUMEN

Peripheral sensory nerve electrical stimulation (PES) excites the primary motor cortex and is expected to improve motor dysfunction post-stroke. However, previous studies have reported a variety of stimulus frequencies and stimulus duration settings, and the effects of these different combinations on primary motor cortex excitability are not clear. We aimed to clarify the effects of different combinations of stimulus frequency and stimulus duration of PES on the excitation of primary motor cortex. Twenty-one healthy individuals (aged > 18 years, right-handed, and without a history of neurological or orthopedic disorders) were included. Each participant experienced three different stimulation frequencies (1, 10 and 50 Hz) and durations (20, 40 and 60 min). Motor-evoked potentials (MEPs) were recorded pre- and post-PES. The outcome measure was the change in primary motor cortex excitability using the MEP ratio. We used a D-optimal design of experiments and response surface analysis to define the optimal combination within nine different settings inducing more satisfying responses. The combination of stimulation frequency and stimulation time that maximized the desirability value was 10 Hz and 40 min, respectively. The results of this study may provide fundamental data for more minimally invasive and effective implementation of PES in patients with stroke.

8.
J Neuroimmunol ; 363: 577794, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34971898

RESUMEN

Myeloid differentiation primary response gene 88 (MyD88) is essential for microglial activation. Despite the significant role of microglia in regulating sleep homeostasis, the contribution of MyD88 to sleep is yet to be determined. To address this, we performed electroencephalographic and electromyographic recordings on MyD88-KO mice and wild-type mice to investigate their sleep/wake cycles. In the daytime, MyD88-KO mice exhibited prolonged wakefulness and shorter non-rapid eye movement sleep duration. Tail suspension and sucrose preference tests revealed that MyD88-KO mice displayed a depressive-like phenotype. We determined monoamines in the prefrontal cortex (PFC) using high-performance liquid chromatography and observed a decreased content of serotonin in the PFC of MyD88-KO mice. Flow cytometry revealed that CD11b, CD45, and F4/80 expressions were elevated at Zeitgeber time (ZT) 1 compared to at ZT13 only in wild-type mice. Furthermore, MFG-E8 and C1qB-tagged synapses were enhanced at ZT1 in the PFC of wild-type mice but not in MyD88-KO mice. Primary cultured microglia from MyD88-KO mice revealed decreased phagocytic ability. These findings indicate that genetic deletion of MyD88 induces insomnia and depressive behavior, at least in part, by affecting microglial homeostasis functions and lowering the serotonergic neuronal output.


Asunto(s)
Depresión/metabolismo , Microglía/metabolismo , Factor 88 de Diferenciación Mieloide/deficiencia , Corteza Prefrontal/metabolismo , Trastornos del Inicio y del Mantenimiento del Sueño/metabolismo , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Serotonina/metabolismo
9.
Biochem Biophys Res Commun ; 409(2): 275-9, 2011 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-21575596

RESUMEN

Angiotensin II type 1 (AT(1)) receptor blockers (ARBs) are known to prevent the onset of stroke and to attenuate neural damage. Additional beneficial effects of ARBs, independent of AT(1) receptor blockade, have been highlighted. Irbesartan is reported to act as an antagonist of the monocyte chemoattractant protein-1 (MCP-1) receptor, C-C chemokine receptor 2 (CCR2), due to its molecular structure. We examined the possible synergistic effects of co-administration of irbesartan with propagermanium, a CCR2 antagonist, on ischemic brain damage. Administration of propagermanium decreased ischemic brain area after middle cerebral artery occlusion (MCAO). To study the possible synergistic effects of propagermanium with ARBs, we employed non-effective lower doses of irbesartan and losartan. Administration of irbesartan with propagermanium decreased the ischemic brain area more markedly compared with propagermanium alone, but co-administration of losartan did not. MCP-1 mRNA level was significantly increased on the ipsilateral side after MCAO, and administration of irbesartan with propagermanium decreased the MCP-1 level, whereas co-administration of losartan did not. Similar results were obtained for MCP-1 protein level. CCR2 mRNA expression was significantly elevated on the ipsilateral side; however, no significant difference was observed between each group. mRNA levels of other inflammatory cytokines such as TNF-α and IL-1ß also significantly increased on the ipsilateral side, but the expression levels were not changed by each drug treatment. Taking these findings together, irbesartan exerts more beneficial effects on ischemic brain damage with an MCP-1 receptor blocker, at least due to its inhibitory effects on MCP-1/CCR2 signaling beyond AT(1) receptor blockade.


Asunto(s)
Bloqueadores del Receptor Tipo 1 de Angiotensina II/uso terapéutico , Compuestos de Bifenilo/uso terapéutico , Isquemia Encefálica/tratamiento farmacológico , Receptores CCR2/antagonistas & inhibidores , Tetrazoles/uso terapéutico , Animales , Isquemia Encefálica/patología , Germanio , Irbesartán , Losartán/uso terapéutico , Masculino , Ratones , Ratones Endogámicos C57BL , Compuestos Organometálicos/uso terapéutico , Propionatos , Receptores CCR2/genética , Receptores CCR2/metabolismo , Transducción de Señal/efectos de los fármacos
10.
Am J Hypertens ; 34(5): 552-562, 2021 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-33349854

RESUMEN

BACKGROUND: Amyloid-ß (Aß) induces cerebrovascular damage and is reported to stimulate endothelial cell senescence. We previously demonstrated that angiotensin II (Ang II)-promoted vascular senescence. We examined the possible cross-talk between Ang II and Aß in regulating brain vascular smooth muscle cell (BVSMC) senescence. METHODS: BVSMCs were prepared from adult male mice and stimulated with Ang II (0, 0.1, 1, 10, and 100 nmol/l) and/or Aß 1-40 (0, 0.1, 0.3, 0.5, 1, 3, and 5 µmol/l) for the indicated times. Cellular senescence was evaluated by senescence-associated ß-galactosidase staining. RESULTS: Treatment with Ang II (100 nmol/l) or Aß (1 µmol/l) at a higher dose increased senescent cells compared with control at 6 days. Treatment with Ang II (10 nmol/l) or Aß (0.5 µmol/l) at a lower dose had no effect on senescence whereas a combined treatment with lower doses of Ang II and Aß significantly enhanced senescent cells. This senescence enhanced by lower dose combination was markedly blocked by valsartan (Ang II type 1 receptor inhibitor) or TAK-242 (Aß receptor TLR4 inhibitor) treatment. Moreover, lower dose combination caused increases in superoxide anion levels and p-ERK expression for 2 days, NF-κB activity, p-IκB, p-IKKα/ß, p16 and p53 expression for 4 days, and an obvious decrease in pRb expression. These changes by lower dose combination, except in p-IκB expression and NF-κB activity, were significantly inhibited by pretreatment with U0126 (ERK inhibitor). CONCLUSIONS: Ang II and Aß synergistically promoted BVSMC senescence at least due to enhancement of the p-ERK-p16-pRb signaling pathway, oxidative stress, and NF-κB/IκB activity.


Asunto(s)
Péptidos beta-Amiloides , Angiotensina II , Senescencia Celular , Péptidos beta-Amiloides/farmacología , Angiotensina II/farmacología , Animales , Encéfalo/metabolismo , Células Cultivadas , Senescencia Celular/efectos de los fármacos , Masculino , Ratones , Músculo Liso Vascular/metabolismo
11.
Front Hum Neurosci ; 14: 568030, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33240062

RESUMEN

Background: Antagonistic tasks are cognitive-motor task trainings. Intervention programs involving antagonistic exercise tasks are being employed to help prevent falls and reduce the need for nursing care in older populations. Meanwhile, the effects of such tasks on blood flow in the brain remain obscure. This study aimed to clarify the effects of antagonistic tasks on prefrontal cortical cerebral hemodynamics. Materials and Methods: We assessed 13 healthy adults (two men, 11 women; mean age, 21.4 ± 1.0 years). Participants imitated each of the antagonistic tasks presented on a PC monitor placed at a 120-mm viewing distance. All participants performed six tasks, consisting of upper-limb tasks (non-antagonism, simple antagonism, and complex antagonism) and upper- and lower-limb tasks (tasks combining lower-limb opening and closing movements with each upper-limb task). We used near-infrared spectroscopy (NIRS) to measure cerebral blood flow dynamics, with oxygenated hemoglobin (Oxy-Hb) concentration changes as the main outcome. A 10-channel probe was placed on the participants' forehead, focusing on the prefrontal cortex. We first obtained a baseline NIRS measurement for 10 s; the participants then imitated the task presented on the PC monitor for 90 s. We measured the number of errors and the subjective difficulty of each task. Results: The increase in prefrontal cortex Oxy-Hb concentration was significantly higher in the complex antagonist conditions than in the non-antagonistic and simple antagonistic conditions. There were no significant prefrontal cortex Oxy-Hb differences between the upper limb and upper- and lower-limb conditions (increasing number of motor limbs). Conclusions: The study findings support that an increase in finger-shaped complexity has a greater effect on cerebral blood flow dynamics in the prefrontal cortex than does an increase in the number of motor limbs involved in the task.

12.
Mol Brain ; 13(1): 57, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32264906

RESUMEN

The neuroinflammation in the ischemic brain could occur as sterile inflammation in response to damage-associated molecular patterns (DAMPs). However, its long-term dynamic transcriptional changes remain poorly understood. It is also unknown whether this neuroinflammation contributes to the recovery or just deteriorates the outcome. The purpose of this study is to characterize the temporal transcriptional changes in the post-stroke brain focusing on DAMPs-related genes by RNA-sequencing during the period of 28 days. We conducted the RNA-sequencing on day 1, 3, 7, 14, 28 post-stroke in the mouse photothrombosis model. The gross morphological observation showed the ischemic lesion on the ipsilateral cortex turned into a scar with the clearance of cellular debris by day 28. The transcriptome analyses indicated that post-stroke period of 28 days was classified into four categories (I Baseline, II Acute, III Sub-acute-#1, IV Sub-acute-#2 phase). During this period, the well-known genes for DAMPs, receptors, downstream cascades, pro-inflammatory cytokines, and phagocytosis were transcriptionally increased. The gene ontology (GO) analysis of biological process indicated that differentially expressed genes (DEGs) are genetically programmed to achieve immune and inflammatory pathways. Interestingly, we found the biphasic induction of various genes, including DAMPs and pro-inflammatory factors, peaking at acute and sub-acute phases. At the sub-acute phase, we also observed the induction of genes for phagocytosis as well as regulatory and growth factors. Further, we found the activation of CREB (cAMP-response element binding protein), one of the key players for neuronal plasticity, in peri-ischemic neurons by immunohistochemistry at this phase. Taken together, these findings raise the possibility the recurrent inflammation occurs at the sub-acute phase in the post-stroke brain, which could be involved in the debris clearance as well as neural reorganization.


Asunto(s)
Alarminas/genética , Isquemia Encefálica/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Inflamación/genética , Accidente Cerebrovascular/genética , Alarminas/metabolismo , Animales , Encéfalo/patología , Isquemia Encefálica/complicaciones , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Ontología de Genes , Inflamación/complicaciones , Masculino , Ratones Endogámicos C57BL , Neuroglía/metabolismo , Neuroglía/patología , Accidente Cerebrovascular/complicaciones , Factores de Tiempo , Transcriptoma/genética , Regulación hacia Arriba/genética
13.
J Mol Cell Cardiol ; 47(6): 798-809, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19769983

RESUMEN

Emerging new research suggests that the functions of the angiotensin (Ang) II type 1 (AT(1)) receptor are regulated in a complex manner. AT(1) receptor-associated protein (ATRAP) has been reported to reduce AT(1) receptor signaling with enhancement of AT(1) receptor internalization and to regulate the calcineurin/nuclear factor of activated T cells (NFAT) pathway. We examined the possibility that ATRAP could attenuate AT(1) receptor-mediated vascular senescence via inactivation with the calcineurin/NFAT pathway. Ang II stimulation significantly increased senescence-associated beta-galactosidase (SA-beta-gal)-stained cells, oxidative stress, and expression of p53 and p21 in wild-type (WT) vascular smooth muscle cells (VSMC). Moreover, in WT VSMC, Ang II stimulation enhanced NFAT transcriptional activity, which was prevented by CAML-siRNA treatment. NFAT-siRNA treatment attenuated Ang-II-increased SA-beta-gal activity and p53 and p21 expression. Treatment with a calcineurin activity inhibitor, cyclosporin A, reduced Ang-II-induced NFAT transcriptional activity and senescent VSMC. In contrast, VSMC prepared from ATRAP transgenic (ATRAP-Tg) mice exhibited attenuation of Ang-II-induced SA-beta-gal activity, oxidative stress, NFAT transcriptional activity, and expression of p53 and p21. Moreover, ATRAP-Tg VSMC showed a more reduction of Ang-II-induced NFAT transcriptional activity by CAML-siRNA treatment than WT VSMC. Furthermore, we demonstrated that in ATRAP-Tg VSMC, NFAT activity and senescent cells induced by ultraviolet irradiation were decreased compared with those in WT VSMC. Treatment with an AT(1) receptor blocker, valsartan, blocked these senescent cells but did not change NFAT activity in both cells. These results suggest that ATRAP negatively regulates VSMC senescence by reducing AT(1) receptor signaling, and that ATRAP-mediated inactivation of the calcineurin/NFAT pathway could be at least partly involved in prevention of VSMC senescence, irrespective of AT(1) receptor blockade in some conditions.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Calcineurina/metabolismo , Senescencia Celular , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/enzimología , Factores de Transcripción NFATC/metabolismo , Angiotensina II/farmacología , Animales , Senescencia Celular/efectos de los fármacos , Senescencia Celular/efectos de la radiación , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/efectos de la radiación , Activación Enzimática/efectos de los fármacos , Activación Enzimática/efectos de la radiación , Ratones , Ratones Transgénicos , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/efectos de la radiación , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/efectos de la radiación , Receptor de Angiotensina Tipo 1/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/efectos de la radiación , Proteína p53 Supresora de Tumor/metabolismo , Rayos Ultravioleta
14.
Lab Invest ; 89(12): 1340-7, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19806081

RESUMEN

Extracellular matrix (ECM) degradation is performed primarily by matrix metalloproteinases (MMPs). MMPs have recently been shown to regulate synaptic activity in the hippocampus and to affect memory and learning. The tissue inhibitor of metalloproteinase (Timp) is an endogenous factor that controls MMP activity by binding to the catalytic site of MMPs. At present, four Timp isotypes have been reported (Timp-1 through Timp-4) with 35-50% amino-acid sequence homology. Timp-3 is a unique member of Timp proteins in that it is bound to the ECM. In this study, we used the passive avoidance test, active avoidance test, and water maze test to examine the cognitive function in Timp-3 knockout (KO) mice. Habituation was evaluated using the open-field test. The water maze test showed that Timp-3 KO mice exhibit deterioration in cognitive function compared with wild-type (WT) mice. The open-field test showed decreased habituation of Timp-3 KO mice. Immunostaining of brain slices revealed the expression of Timp-3 in the hippocampus. In situ zymography of the hippocampus showed increased gelatinolytic activity in Timp-3 KO mice compared with WT mice. These results present the first evidence of Timp-3 involvement in cognitive function and hippocampal MMP activity in mice. Moreover, our findings suggest a novel therapeutic target to be explored for improvement of cognitive function in humans.


Asunto(s)
Reacción de Prevención/fisiología , Hipocampo/enzimología , Memoria/fisiología , Inhibidor Tisular de Metaloproteinasa-3/deficiencia , Animales , Gelatinasas/metabolismo , Habituación Psicofisiológica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
15.
Stroke ; 39(7): 2029-36, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18436887

RESUMEN

BACKGROUND AND PURPOSE: We investigated the effect of temporary treatment with a nonhypotensive dose of valsartan on ischemic brain damage in C57BL/6 mice. METHODS: We separated the mice into 3 groups of valsartan treatment before middle cerebral artery (MCA) occlusion: (1) for 4 weeks: Val (2W, 2W); (2) for 2 weeks followed by its cessation for 2 weeks: Val (2W, -); and (3) no treatment for 4 weeks: Val (-, -). RESULTS: Ischemic volume, DNA damage, superoxide production, and mRNA levels of monocyte chemoattractant protein-1 and tumor necrosis factor-alpha on the ipsilateral side after 24 hours of MCA occlusion were significantly reduced in both Val (2W, 2W) and Val (2W, -) mice compared with those in Val (-, -) mice, whereas these parameters were larger in Val (2W, -) mice than in Val (2W, 2W) mice. Moreover, mice in both the Val (2W, 2W) and Val (2W, -) groups exhibited an increase in cerebral blood flow in the peripheral territory of the MCA 1 hour after MCA occlusion, with increases in endothelial nitric oxide synthase activation and nitric oxide production. Before MCA occlusion, treatment with valsartan did not influence superoxide production or mRNA levels of monocyte chemoattractant protein-1 and tumor necrosis factor-alpha in the brain. However, the capillary density in the brain in both Val (2W, 2W) and Val (2W, -) mice was increased before MCA occlusion. CONCLUSIONS: Our results suggest that temporary valsartan treatment could protect against ischemic brain damage even after its cessation, at least in part due to an increase in capillary density.


Asunto(s)
Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/prevención & control , Capilares/efectos de los fármacos , Receptor de Angiotensina Tipo 1/química , Tetrazoles/farmacología , Valina/análogos & derivados , Animales , Encéfalo/efectos de los fármacos , Encéfalo/patología , Lesiones Encefálicas/prevención & control , Quimiocina CCL2/metabolismo , Daño del ADN , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo , Superóxidos/metabolismo , Valina/farmacología , Valsartán
16.
Stroke ; 39(9): 2554-9, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18617657

RESUMEN

BACKGROUND AND PURPOSE: Protective effects of bone marrow stromal cells (MSCs) on ischemic brain damage have been highlighted. We examined the possibility that deletion of AT(2) receptor could attenuate the cerebroprotective effects of MSC using AT(2) receptor-deficient mice (Agtr2 (-)) and the effect of selective AT(1) receptor blocker. METHODS: Wild-type mice (Agtr2 (+)) were subjected to 3 hours of focal brain ischemia followed by reperfusion (ischemia-reperfusion injury). Simultaneously, Agtr2 (+)-MSC, Agtr2 (-)-MSC, or saline was injected through the tail vein. RESULTS: Survival rates at 6 days after ischemia-reperfusion injury were as follows: approximately 50% in saline-injected mice, 80% in Agtr2 (+)-MSC-injected mice, and 20% in Agtr2 (-)-MSC-injected mice. Neurological deficit after ischemia-reperfusion injury was improved in Agtr2 (+)-MSC-injected mice, but not in Agtr2 (-)-MSC-injected mice. After 48 hours of ischemia-reperfusion injury, brain infarct size was reduced in Agtr2 (+)-MSC-injected mice, but not in Agtr2 (-)-MSC-injected mice. Moreover, brain edema was significantly ameliorated in Agtr2 (+)-MSC-treated mice but not in Agtr2 (-)-MSC-treated mice. Furthermore, the increase in mRNA expression of tumor necrosis factor-alpha and monocyte chemoattractant protein-1 in the ischemic brain was less in Agtr2 (+)-MSC-treated mice in the ipsilateral site, but was similar in the contralateral hemisphere. Tumor necrosis factor-alpha level was increased in both the contralateral hemisphere and ipsilateral hemisphere of Agtr2 (-)-MSC-treated mice. In contrast, monocyte chemoattractant protein-1 levels tended to increase Agtr2 (-)-MSC-treated mice without a significant difference. Treatment of MSC with an AT(1) receptor blocker, valsartan, significantly improved survival rates in Agtr2 (-)-MSC-injected mice. CONCLUSIONS: These results suggest that AT(2) receptor signaling in MSC attenuated brain damage and neurological deficit (deleted).


Asunto(s)
Trasplante de Médula Ósea/métodos , Infarto Encefálico/terapia , Receptor de Angiotensina Tipo 2/genética , Daño por Reperfusión/terapia , Células del Estroma/trasplante , Animales , Antihipertensivos/farmacología , Infarto Encefálico/genética , Infarto Encefálico/fisiopatología , Isquemia Encefálica/genética , Isquemia Encefálica/fisiopatología , Isquemia Encefálica/terapia , Células Cultivadas , Quimiocina CCL2/metabolismo , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor de Angiotensina Tipo 1/efectos de los fármacos , Receptor de Angiotensina Tipo 1/metabolismo , Daño por Reperfusión/genética , Daño por Reperfusión/fisiopatología , Tasa de Supervivencia , Tetrazoles/farmacología , Resultado del Tratamiento , Factor de Necrosis Tumoral alfa/metabolismo , Valina/análogos & derivados , Valina/farmacología , Valsartán
17.
Biochem Biophys Res Commun ; 375(3): 446-9, 2008 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-18715543

RESUMEN

Telmisartan is a unique angiotensin receptor blocker (ARB) and partial agonist of peroxisome proliferator-activated receptor (PPAR)-gamma. Here, we investigated the preventive effect of telmisartan on cognitive decline in Alzheimer disease. In ddY mice, intracerebroventricular injection of Abeta 1-40 significantly attenuated their cognitive function evaluated by shuttle avoidance test. Pretreatment with a non-hypotensive dose of telmisartan significantly inhibited such cognitive decline. Interestingly, co-treatment with GW9662, a PPAR-gamma antagonist, partially inhibited this improvement of cognitive decline. Another ARB, losartan, which has less PPAR-gamma agonistic effect, also inhibited Abeta-injection-induced cognitive decline; however the effect was smaller than that of telmisartan and was not affected by GW9662. Immunohistochemical staining for Abeta showed the reduced Abeta deposition in telmisartan-treated mice. However, this reduction was not observed in mice co-administered GW9662. These findings suggest that ARB has a preventive effect on cognitive impairment in Alzheimer disease, and telmisartan, with PPAR-gamma activation, could exert a stronger effect.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Bloqueadores del Receptor Tipo 1 de Angiotensina II/administración & dosificación , Bencimidazoles/administración & dosificación , Benzoatos/administración & dosificación , Trastornos del Conocimiento/prevención & control , PPAR gamma/agonistas , Péptidos beta-Amiloides/toxicidad , Anilidas/farmacología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Trastornos del Conocimiento/inducido químicamente , Trastornos del Conocimiento/metabolismo , Trastornos del Conocimiento/patología , Losartán/administración & dosificación , Masculino , Ratones , Ratones Endogámicos , Telmisartán
18.
Hypertens Res ; 31(1): 161-8, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18360031

RESUMEN

The effects of an angiotensin II (Ang II) type 1 (AT(1)) receptor blocker (ARB) on focal brain ischemia and atherosclerotic lesions were explored in atherosclerotic apolipoprotein E-deficient (ApoEKO) mice treated with a high-cholesterol diet (HCD). The ischemic brain area and neurological deficit 24 h after middle cerebral artery (MCA) occlusion were significantly greater in ApoEKO mice treated with HCD for 10 weeks than in those with a normal standard diet. The reduction of cerebral surface blood flow in the penumbral region and the increase in superoxide production in the ischemic area were exaggerated in HCD-treated ApoEKO mice. Histological analysis showed atherosclerotic changes in the proximal aorta and deposition of lipid droplets in the arterial wall in the brain. Administration of an ARB, telmisartan (0.3 mg/kg/day), for the last 2 weeks after 8 weeks of HCD feeding attenuated the ischemic brain area, the neurological deficit, the superoxide production in the ischemic area, and the reduction of cerebral blood flow in the penumbra, without significantly changing blood pressure or serum cholesterol level. Telmisartan also decreased atherosclerotic lesion formation in the proximal aorta of HCD-treated ApoEKO mice, although it did not remarkably change lipid deposition in the cerebral arteries. These results suggest that the blockade of the AT(1) receptor attenuates ischemic brain damage induced in an atherosclerosis model. This inhibitory action is mediated through the attenuation of the reduction in cerebral blood flow and of oxidative stress in the brain; it also mediated through telmisartan's anti-atherosclerotic effect.


Asunto(s)
Bloqueadores del Receptor Tipo 1 de Angiotensina II/uso terapéutico , Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Aterosclerosis/complicaciones , Bencimidazoles/uso terapéutico , Benzoatos/uso terapéutico , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/genética , Animales , Aorta/patología , Aterosclerosis/genética , Aterosclerosis/patología , Isquemia Encefálica/patología , Circulación Cerebrovascular/genética , Circulación Cerebrovascular/fisiología , Infarto de la Arteria Cerebral Media/patología , Flujometría por Láser-Doppler , Ratones , Ratones Noqueados , Superóxidos/metabolismo , Telmisartán
19.
Mol Endocrinol ; 21(2): 499-511, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17068200

RESUMEN

Angiotensin II (Ang II) type 2 (AT2) receptors are abundantly expressed not only in the fetal brain where they probably contribute to brain development, but also in pathological conditions to protect the brain against stroke; however, the detailed mechanisms are unclear. Here, we demonstrated that AT2 receptor signaling induced neural differentiation via an increase in MMS2, one of the ubiquitin-conjugating enzyme variants. The AT2 receptor, MMS2, Src homology 2 domain-containing protein-tyrosine phosphatase 1 (SHP-1), and newly cloned AT2 receptor-interacting protein (ATIP) were highly expressed in fetal rat neurons and declined after birth. Ang II induced MMS2 expression in a dose-dependent manner, reaching a peak after 4 h of stimulation, and this effect was enhanced with AT1 receptor blocker, valsartan, but inhibited by AT2 receptor blocker PD123319. Moreover, we observed that an AT2 receptor agonist, CGP42112A, alone enhanced MMS2 expression. Neurons treated with small interfering RNA of MMS2 failed to exhibit neurite outgrowth and synapse formation. Moreover, the increase in AT2 receptor-induced MMS2 mRNA expression was enhanced by overexpression of ATIP but inhibited by small interfering RNA of SHP-1 and overexpression of catalytically dominant-negative SHP-1 or a tyrosine phosphatase inhibitor, sodium orthovanadate. After AT2 receptor stimulation, ATIP and SHP-1 were translocated into the nucleus after formation of their complex. Furthermore, increased MMS2 expression mediates the inhibitor of DNA binding 1 proteolysis and promotes DNA repair. These results provide a new insight into the contribution of AT2 receptor stimulation to neural differentiation via transactivation of MMS2 expression involving the association of ATIP and SHP-1.


Asunto(s)
Angiotensina II/fisiología , Proteínas Portadoras/metabolismo , Ligasas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Receptor de Angiotensina Tipo 2/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Bloqueadores del Receptor Tipo 2 de Angiotensina II , Animales , Proteínas Portadoras/genética , Diferenciación Celular , Núcleo Celular/fisiología , Células Cultivadas , Reparación del ADN , Imidazoles/farmacología , Proteína 1 Inhibidora de la Diferenciación/metabolismo , Ratones , Neuritas/fisiología , Neuronas/metabolismo , Oligopéptidos/farmacología , Proteína Fosfatasa 1 , Transporte de Proteínas , Proteína Tirosina Fosfatasa no Receptora Tipo 6/antagonistas & inhibidores , Piridinas/farmacología , Ratas , Ratas Wistar , Receptor de Angiotensina Tipo 2/agonistas , Transducción de Señal , Sinapsis/fisiología , Tetrazoles/farmacología , Activación Transcripcional , Proteínas Supresoras de Tumor/genética , Valina/análogos & derivados , Valina/farmacología , Valsartán , Vanadatos/farmacología
20.
J Am Heart Assoc ; 7(3)2018 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-29431106

RESUMEN

BACKGROUND: The classical renin-angiotensin system is known as the angiotensin (Ang)-converting enzyme/Ang II/Ang type 1 receptor axis, which induces various organ damage including cognitive decline. The angiotensin-converting enzyme 2/Ang-(1-7)/Mas axis is known to exert antagonistic actions against the classical renin-angiotensin system axis in the cardiovascular system. However, its roles in the brain remain unclear. We examined possible roles of the angiotensin-converting enzyme 2/Ang-(1-7)/Mas axis in cognitive function, employing vascular cognitive impairment model mice. METHODS AND RESULTS: Male 10-week-old C57BL6 (wild-type mice, Mas1 knockout mice, Ang II type 2 receptor knockout mice, and Ang II type 2 receptor/Mas1 double knockout mice were subjected to bilateral carotid artery stenosis (BCAS) surgery. Six weeks after treatment, they were subjected to cognitive tasks. Brain samples were used for histopathological analysis. Cognitive function was significantly impaired in wild-type and double knockout mice after BCAS. On the other hand, the cognitive function of Mas1 knockout mice was maintained in spite of the reduction of cerebral blood flow with BCAS. Total cell number in the dentate gyrus region was significantly reduced after BCAS in wild-type but not in Mas1 knockout mice. The number of doublecortin-positive cells in the subgranular zone was not significantly different between wild-type and Mas1 knockout mice. Ang-(1-7) administration did not improve cognitive function in all mice after BCAS surgery. CONCLUSIONS: Lack of the Mas receptor may have a protective effect against chronic brain ischemia when the Ang II type 2 receptor exists.


Asunto(s)
Conducta Animal , Encéfalo/irrigación sanguínea , Encéfalo/metabolismo , Estenosis Carotídea/complicaciones , Circulación Cerebrovascular , Trastornos del Conocimiento/prevención & control , Cognición , Demencia Vascular/prevención & control , Proteínas Proto-Oncogénicas/deficiencia , Receptor de Angiotensina Tipo 2/deficiencia , Receptores Acoplados a Proteínas G/deficiencia , Animales , Encéfalo/patología , Estenosis Carotídea/metabolismo , Estenosis Carotídea/fisiopatología , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/metabolismo , Trastornos del Conocimiento/psicología , Demencia Vascular/etiología , Demencia Vascular/metabolismo , Demencia Vascular/psicología , Modelos Animales de Enfermedad , Proteínas de Dominio Doblecortina , Predisposición Genética a la Enfermedad , Masculino , Aprendizaje por Laberinto , Memoria a Corto Plazo , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/metabolismo , Actividad Motora , Neuropéptidos/metabolismo , Fenotipo , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas/genética , Receptor de Angiotensina Tipo 2/genética , Receptores Acoplados a Proteínas G/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA