Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 110(15): 5840-5, 2013 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-23530213

RESUMEN

Microorganisms can be engineered to produce useful products, including chemicals and fuels from sugars derived from renewable feedstocks, such as plant biomass. An alternative method is to use low potential reducing power from nonbiomass sources, such as hydrogen gas or electricity, to reduce carbon dioxide directly into products. This approach circumvents the overall low efficiency of photosynthesis and the production of sugar intermediates. Although significant advances have been made in manipulating microorganisms to produce useful products from organic substrates, engineering them to use carbon dioxide and hydrogen gas has not been reported. Herein, we describe a unique temperature-dependent approach that confers on a microorganism (the archaeon Pyrococcus furiosus, which grows optimally on carbohydrates at 100°C) the capacity to use carbon dioxide, a reaction that it does not accomplish naturally. This was achieved by the heterologous expression of five genes of the carbon fixation cycle of the archaeon Metallosphaera sedula, which grows autotrophically at 73°C. The engineered P. furiosus strain is able to use hydrogen gas and incorporate carbon dioxide into 3-hydroxypropionic acid, one of the top 12 industrial chemical building blocks. The reaction can be accomplished by cell-free extracts and by whole cells of the recombinant P. furiosus strain. Moreover, it is carried out some 30°C below the optimal growth temperature of the organism in conditions that support only minimal growth but maintain sufficient metabolic activity to sustain the production of 3-hydroxypropionate. The approach described here can be expanded to produce important organic chemicals, all through biological activation of carbon dioxide.


Asunto(s)
Dióxido de Carbono/química , Hidrógeno/química , Microbiología Industrial/métodos , Ácido Láctico/análogos & derivados , Carbohidratos/química , Gases , Ingeniería Genética , Ácido Láctico/biosíntesis , Ácido Láctico/química , Operón , Reacción en Cadena de la Polimerasa , Pyrococcus furiosus/genética , Pyrococcus furiosus/crecimiento & desarrollo , Pyrococcus furiosus/metabolismo , Temperatura
2.
Arch Biochem Biophys ; 550-551: 50-7, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24769336

RESUMEN

Small-angle neutron scattering (SANS) and molecular dynamics (MD) simulation were used to investigate the structure of trimeric photosystem I (PSI) from Thermosynechococcus elongatus (T. elongatus) stabilized in n-dodecyl-ß-d-maltoside (DDM) detergent solution. Scattering curves of detergent and protein-detergent complexes were measured at 18% D2O, the contrast match point for the detergent, and 100% D2O, allowing observation of the structures of protein/detergent complexes. It was determined that the maximum dimension of the PSI-DDM complex was consistent with the presence of a monolayer belt of detergent around the periphery of PSI. A dummy-atom reconstruction of the shape of the complex from the SANS data indicates that the detergent envelope has an irregular shape around the hydrophobic periphery of the PSI trimer rather than a uniform, toroidal belt around the complex. A 50 ns MD simulation model (a DDM ring surrounding the PSI complex with extra interstitial DDM) of the PSI-DDM complex was developed for comparison with the SANS data. The results suggest that DDM undergoes additional structuring around the membrane-spanning surface of the complex instead of a simple, relatively uniform belt, as is generally assumed for studies that use detergents to solubilize membrane proteins.


Asunto(s)
Proteínas Bacterianas/química , Cianobacterias/química , Detergentes/química , Glucósidos/química , Simulación de Dinámica Molecular , Complejo de Proteína del Fotosistema I/química , Proteínas Bacterianas/aislamiento & purificación , Cianobacterias/enzimología , Deuterio/química , Interacciones Hidrofóbicas e Hidrofílicas , Micelas , Conformación Molecular , Difracción de Neutrones , Complejo de Proteína del Fotosistema I/aislamiento & purificación , Multimerización de Proteína , Dispersión del Ángulo Pequeño , Soluciones
3.
Mol Ther Methods Clin Dev ; 29: 426-436, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37273900

RESUMEN

Transient transfection of mammalian cells using plasmid DNA is a standard method to produce adeno-associated virus (AAV) vectors allowing for flexible and scalable manufacture. Typically, three plasmids are used to encode the necessary components to facilitate vector production; however, a dual-plasmid system, termed pDG, was introduced over 2 decades ago demonstrating two components could be combined resulting in comparable productivity to triple transfection. We have developed a novel dual-plasmid system, pOXB, with an alternative arrangement of sequences that results in significantly increased AAV vector productivity and percentage of full capsids packaged in comparison to the pDG dual design and triple transfection. Here, we demonstrate the reproducibility of these findings across seven recombinant AAV genomes and multiple capsid serotypes as well as the scalability of the pOXB dual-plasmid transfection at 50-L bioreactor scale. Purified drug substance showed a consistent product quality profile in line with triple-transfected vectors, except for a substantial improvement in intact genomes packaged using the pOXB dual- transfection system. Furthermore, pOXB dual- and triple-transfection-based vectors performed consistently in vivo. The pOXB dual plasmid represents an innovation in AAV manufacturing resulting in significant process gains while maintaining the flexibility of a transient transfection platform.

4.
Nat Nanotechnol ; 5(1): 73-9, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19898496

RESUMEN

There is considerable interest in making use of solar energy through photosynthesis to create alternative forms of fuel. Here, we show that photosystem I from a thermophilic bacterium and cytochrome-c(6) can, in combination with a platinum catalyst, generate a stable supply of hydrogen in vitro upon illumination. The self-organized platinization of the photosystem I nanoparticles allows electron transport from sodium ascorbate to photosystem I via cytochrome-c(6) and finally to the platinum catalyst, where hydrogen gas is formed. Our system produces hydrogen at temperatures up to 55 degrees C and is temporally stable for >85 days with no decrease in hydrogen yield when tested intermittently. The maximum yield is approximately 5.5 micromol H(2) h(-1) mg(-1) chlorophyll and is estimated to be approximately 25-fold greater than current biomass-to-fuel strategies. Future work will further improve this yield by increasing the kinetics of electron transfer, extending the spectral response and replacing the platinum catalyst with a renewable hydrogenase.


Asunto(s)
Proteínas Bacterianas/metabolismo , Fuentes de Energía Bioeléctrica , Cianobacterias/metabolismo , Citocromos c6/metabolismo , Hidrógeno/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Catálisis , Cianobacterias/química , Citocromos c6/aislamiento & purificación , Modelos Moleculares , Nanopartículas/química , Complejo de Proteína del Fotosistema I/aislamiento & purificación , Platino (Metal)/química , Estabilidad Proteica , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA