RESUMEN
In order to get insight into the wet agglomeration process, we numerically investigate the growth of a single granule inside a dense flow of an initially homogeneous distribution of wet and dry particles. The simulations are performed by means of the discrete element method and the binding liquid is assumed to be transported by the wet particles, which interact via capillary and viscous force laws. The granule size is found to be an exponential function of time, reflecting the conservation of the amount of liquid and the decrease of the number of available wet particles inside the flow during agglomeration. We analyze this behavior in terms of the accretion and erosion rates of wet particles for a range of different values of material parameters such as mean particle size, size polydispersity, friction coefficient and liquid viscosity. In particular, we propose a phase diagram of the granule growth as a function of the mean primary particle diameter and particle size span, which separates the parametric domain in which the granule grows from the domain in which the granule does not survive.
RESUMEN
BACKGROUND: Post-adolescence is known to be a period of general maturation and development in the human brain. In brain imaging, volumetric and morphologic cortical grey-matter changes can easily be assessed, but the analysis of cortical complexity seems to have been broadly neglected for this age interval. METHODS: Magnetic resonance imaging (MRI) was used to acquire structural brain images. The study involved 17 adolescents (mean age 14.1 ± 0.27, 11 girls) who were compared with 14 young adults (mean age 24.24 ± 2.76, 7 women) for measures of brain complexity (fractal dimension--FD), grey matter (GM) volume and surface-area of cortical ribbon. FD was calculated using box-counting and Minkowski-Bouligand methods; FD and GM volume were measured for the whole brain, each hemisphere and lobes: frontal, occipital, parietal and temporal. RESULTS: The results show that the adults have a lower cortical complexity than the adolescents, which was significant for whole brain, left and right hemisphere, frontal and parietal lobes for both genders; and only for males in left temporal lobe. The GM volume was smaller in men than in boys for almost all measurements, and smaller in women than in girls just for right parietal lobe. A significant Pearson correlation was found between FD and GM volume for whole brain and each hemisphere in both genders. The decrease of the GM surface-area was significant in post-adolescence for males, not for females. CONCLUSIONS: During post-adolescence there are common changes in cortical complexity in the same regions for both genders, but there are also gender specific changes in some cortical areas. The sex differences from different cortical measurements (FD, GM volume and surface-area of cortical ribbon) could suggest a maturation delay in specific brain regions for each gender in relation to the other and might be explained through the functional role of the corresponding regions reflected in gender difference of developed abilities.