Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 24(10): 1616-1627, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37667052

RESUMEN

Millions of people are suffering from Long COVID or post-acute sequelae of COVID-19 (PASC). Several biological factors have emerged as potential drivers of PASC pathology. Some individuals with PASC may not fully clear the coronavirus SARS-CoV-2 after acute infection. Instead, replicating virus and/or viral RNA-potentially capable of being translated to produce viral proteins-persist in tissue as a 'reservoir'. This reservoir could modulate host immune responses or release viral proteins into the circulation. Here we review studies that have identified SARS-CoV-2 RNA/protein or immune responses indicative of a SARS-CoV-2 reservoir in PASC samples. Mechanisms by which a SARS-CoV-2 reservoir may contribute to PASC pathology, including coagulation, microbiome and neuroimmune abnormalities, are delineated. We identify research priorities to guide the further study of a SARS-CoV-2 reservoir in PASC, with the goal that clinical trials of antivirals or other therapeutics with potential to clear a SARS-CoV-2 reservoir are accelerated.


Asunto(s)
COVID-19 , Humanos , Síndrome Post Agudo de COVID-19 , ARN Viral/genética , SARS-CoV-2 , Antivirales , Progresión de la Enfermedad
3.
Radiology ; 309(1): e230984, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37874235

RESUMEN

Background Gadolinium retention has been observed in organs of patients with normal renal function; however, the biodistribution and speciation of residual gadolinium is not well understood. Purpose To compare the pharmacokinetics, distribution, and speciation of four gadolinium-based contrast agents (GBCAs) in healthy rats using MRI, mass spectrometry, elemental imaging, and electron paramagnetic resonance (EPR) spectroscopy. Materials and Methods In this prospective animal study performed between November 2021 and September 2022, 32 rats received a dose of gadoterate, gadoteridol, gadobutrol, or gadobenate (2.0 mmol/kg) for 10 consecutive days. GBCA-naive rats were used as controls. Three-dimensional T1-weighted ultrashort echo time images and R2* maps of the kidneys were acquired at 3, 17, 34, and 52 days after injection. At 17 and 52 days after injection, gadolinium concentrations in 23 organ, tissue, and fluid specimens were measured with mass spectrometry; gadolinium distribution in the kidneys was evaluated using elemental imaging; and gadolinium speciation in the kidney cortex was assessed using EPR spectroscopy. Data were assessed with analysis of variance, Kruskal-Wallis test, analysis of response profiles, and Pearson correlation analysis. Results For all GBCAs, the kidney cortex exhibited higher gadolinium retention at 17 days after injection than all other specimens tested (mean range, 350-1720 nmol/g vs 0.40-401 nmol/g; P value range, .001-.70), with gadoteridol showing the lowest level of retention. Renal cortex R2* values correlated with gadolinium concentrations measured ex vivo (r = 0.95; P < .001), whereas no associations were found between T1-weighted signal intensity and ex vivo gadolinium concentration (r = 0.38; P = .10). EPR spectroscopy analysis of rat kidney cortex samples showed that all GBCAs were primarily intact at 52 days after injection. Conclusion Compared with other macrocyclic GBCAs, gadoteridol administration led to the lowest level of retention. The highest concentration of gadolinium was retained in the kidney cortex, but T1-weighted MRI was not sensitive for detecting residual gadolinium in this tissue. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Tweedle in this issue.


Asunto(s)
Medios de Contraste , Compuestos Organometálicos , Ratas , Humanos , Animales , Gadolinio/farmacocinética , Distribución Tisular , Estudios Prospectivos , Encéfalo , Gadolinio DTPA , Imagen por Resonancia Magnética/métodos
4.
J Magn Reson Imaging ; 57(5): 1507-1515, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-35900119

RESUMEN

BACKGROUND: Myocardial feature tracking (FT) provides a comprehensive analysis of myocardial deformation from cine balanced steady-state free-precession images (bSSFP). However, FT remains time-consuming, precluding its clinical adoption. PURPOSE: To compare left-ventricular global radial strain (GRS) and global circumferential strain (GCS) values measured using automated DeepStrain analysis of short-axis cine images to those calculated using manual commercially available FT analysis. STUDY TYPE: Retrospective, single-center. POPULATION: A total of 30 healthy subjects and 120 patients with cardiac disease for DeepStrain development. For evaluation, 47 healthy subjects (36 male, 53 ± 5 years) and 533 patients who had undergone a clinical cardiac MRI (373 male, 59 ± 14 years). FIELD STRENGTH/SEQUENCE: bSSFP sequence at 1.5 T (Phillips) and 3 T (Siemens). ASSESSMENT: Automated DeepStrain measurements of GRS and GCS were compared to commercially available FT (Circle, cvi42) measures obtained by readers with 1 year and 3 years of experience. Comparisons were performed overall and stratified by scanner manufacturer. STATISTICAL TESTS: Paired t-test, linear regression slope, Pearson correlation coefficient (r). RESULTS: Overall, FT and DeepStrain measurements of GCS were not significantly different (P = 0.207), but measures of GRS were significantly different. Measurements of GRS from Philips (slope = 1.06 [1.03 1.08], r = 0.85) and Siemens (slope = 1.04 [0.99 1.09], r = 0.83) data showed a very strong correlation and agreement between techniques. Measurements of GCS from Philips (slope = 0.98 [0.98 1.01], r = 0.91) and Siemens (slope = 1.0 [0.96 1.03], r = 0.88) data similarly showed a very strong correlation. The average analysis time per subject was 4.1 ± 1.2 minutes for FT and 34.7 ± 3.3 seconds for DeepStrain, representing a 7-fold reduction in analysis time. DATA CONCLUSION: This study demonstrated high correlation of myocardial GCS and GRS measurements between freely available fully automated DeepStrain and commercially available manual FT software, with substantial time-saving in the analysis. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 3.


Asunto(s)
Imagen por Resonancia Cinemagnética , Función Ventricular Izquierda , Humanos , Masculino , Imagen por Resonancia Cinemagnética/métodos , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos , Miocardio , Reproducibilidad de los Resultados , Valor Predictivo de las Pruebas
5.
Stroke ; 53(2): 595-604, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34965737

RESUMEN

BACKGROUND AND PURPOSE: High-risk atherosclerosis is an underlying cause of cardiovascular events, yet identifying the specific patient population at immediate risk is still challenging. Here, we used a rabbit model of atherosclerotic plaque rupture and human carotid endarterectomy specimens to describe the potential of molecular fibrin imaging as a tool to identify thrombotic plaques. METHODS: Atherosclerotic plaques in rabbits were induced using a high-cholesterol diet and aortic balloon injury (N=13). Pharmacological triggering was used in a group of rabbits (n=9) to induce plaque disruption. Animals were grouped into thrombotic and nonthrombotic plaque groups based on gross pathology (gold standard). All animals were injected with a novel fibrin-specific probe 68Ga-CM246 followed by positron emission tomography (PET)/magnetic resonance imaging 90 minutes later. 68Ga-CM246 was quantified on the PET images using tissue-to-background (back muscle) ratios and standardized uptake value. RESULTS: Both tissue-to-background (back muscle) ratios and standardized uptake value were significantly higher in the thrombotic versus nonthrombotic group (P<0.05). Ex vivo PET and autoradiography of the abdominal aorta correlated positively with in vivo PET measurements. Plaque disruption identified by 68Ga-CM246 PET agreed with gross pathology assessment (85%). In ex vivo surgical specimens obtained from patients undergoing elective carotid endarterectomy (N=12), 68Ga-CM246 showed significantly higher binding to carotid plaques compared to a D-cysteine nonbinding control probe. CONCLUSIONS: We demonstrated that molecular fibrin PET imaging using 68Ga-CM246 could be a useful tool to diagnose experimental and clinical atherothrombosis. Based on our initial results using human carotid plaque specimens, in vivo molecular imaging studies are warranted to test 68Ga-CM246 PET as a tool to stratify risk in atherosclerotic patients.


Asunto(s)
Fibrina , Trombosis Intracraneal/diagnóstico por imagen , Placa Aterosclerótica/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Radiofármacos , Animales , Aorta Abdominal/diagnóstico por imagen , Músculos de la Espalda/diagnóstico por imagen , Arterias Carótidas/diagnóstico por imagen , Femenino , Radioisótopos de Galio , Humanos , Procesamiento de Imagen Asistido por Computador , Trombosis Intracraneal/etiología , Imagen por Resonancia Magnética , Masculino , Placa Aterosclerótica/complicaciones , Conejos
6.
Ann Neurol ; 83(6): 1186-1197, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29740862

RESUMEN

OBJECTIVE: To characterize [11 C]-PBR28 brain uptake using positron emission tomography (PET) in people with amyotrophic lateral sclerosis (ALS) and primary lateral sclerosis (PLS). We have previously shown increased [11 C]-PBR28 uptake in the precentral gyrus in a small group of ALS patients. Herein, we confirm our initial finding, study the longitudinal changes, and characterize the gray versus white matter distribution of [11 C]-PBR28 uptake in a larger cohort of patients with ALS and PLS. METHODS: Eighty-five participants including 53 with ALS, 11 with PLS, and 21 healthy controls underwent integrated [11 C]-PBR28 PET-magnetic resonance brain imaging. Patients were clinically assessed using the Upper Motor Neuron Burden (UMNB) and the Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised (ALSFRS-R). [11 C]-PBR28 uptake was quantified as standardized uptake value ratio (SUVR) and compared between groups. Cortical thickness and fractional anisotropy were compared between groups and correlated with SUVR and the clinical data. [11 C]-PBR28 uptake and ALSFRS-R were compared longitudinally over 6 months in 10 ALS individuals. RESULTS: Whole brain voxelwise, surface-based, and region of interest analyses revealed increased [11 C]-PBR28 uptake in the precentral and paracentral gyri in ALS, and in the subcortical white matter for the same regions in PLS, compared to controls. The increase in [11 C]-PBR28 uptake colocalized and correlated with cortical thinning, reduced fractional anisotropy, and increased mean diffusivity, and correlated with higher UMNB score. No significant changes were detected in [11 C]-PBR28 uptake over 6 months despite clinical progression. INTERPRETATION: Glial activation measured by in vivo [11 C]-PBR28 PET is increased in pathologically relevant regions in people with ALS and correlates with clinical measures. Ann Neurol 2018;83:1186-1197.


Asunto(s)
Esclerosis Amiotrófica Lateral/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Adulto , Anciano , Esclerosis Amiotrófica Lateral/genética , Encéfalo/efectos de los fármacos , Mapeo Encefálico , Estudios de Cohortes , Correlación de Datos , Estudios Transversales , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Persona de Mediana Edad , Pirimidinas/farmacocinética , Receptores de GABA/genética , Índice de Severidad de la Enfermedad
7.
J Magn Reson Imaging ; 48(5): 1288-1296, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29517819

RESUMEN

BACKGROUND: Subject motion in positron emission tomography (PET) studies leads to image blurring and artifacts; simultaneously acquired magnetic resonance imaging (MRI) data provides a means for motion correction (MC) in integrated PET/MRI scanners. PURPOSE: To assess the effect of realistic head motion and MR-based MC on static [18 F]-fluorodeoxyglucose (FDG) PET images in dementia patients. STUDY TYPE: Observational study. POPULATION: Thirty dementia subjects were recruited. FIELD STRENGTH/SEQUENCE: 3T hybrid PET/MR scanner where EPI-based and T1 -weighted sequences were acquired simultaneously with the PET data. ASSESSMENT: Head motion parameters estimated from high temporal resolution MR volumes were used for PET MC. The MR-based MC method was compared to PET frame-based MC methods in which motion parameters were estimated by coregistering 5-minute frames before and after accounting for the attenuation-emission mismatch. The relative changes in standardized uptake value ratios (SUVRs) between the PET volumes processed with the various MC methods, without MC, and the PET volumes with simulated motion were compared in relevant brain regions. STATISTICAL TESTS: The absolute value of the regional SUVR relative change was assessed with pairwise paired t-tests testing at the P = 0.05 level, comparing the values obtained through different MR-based MC processing methods as well as across different motion groups. The intraregion voxelwise variability of regional SUVRs obtained through different MR-based MC processing methods was also assessed with pairwise paired t-tests testing at the P = 0.05 level. RESULTS: MC had a greater impact on PET data quantification in subjects with larger amplitude motion (higher than 18% in the medial orbitofrontal cortex) and greater changes were generally observed for the MR-based MC method compared to the frame-based methods. Furthermore, a mean relative change of ∼4% was observed after MC even at the group level, suggesting the importance of routinely applying this correction. The intraregion voxelwise variability of regional SUVRs was also decreased using MR-based MC. All comparisons were significant at the P = 0.05 level. DATA CONCLUSION: Incorporating temporally correlated MR data to account for intraframe motion has a positive impact on the FDG PET image quality and data quantification in dementia patients. LEVEL OF EVIDENCE: 3 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;47:1288-1296.


Asunto(s)
Encéfalo/diagnóstico por imagen , Demencia/diagnóstico por imagen , Imagen por Resonancia Magnética , Imagen Multimodal , Tomografía de Emisión de Positrones , Anciano , Anciano de 80 o más Años , Algoritmos , Artefactos , Femenino , Fluorodesoxiglucosa F18/química , Movimientos de la Cabeza , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Distribución Normal
8.
Acta Oncol ; 57(11): 1521-1531, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29842815

RESUMEN

BACKGROUND: In radiotherapy, MR imaging is only used because it has significantly better soft tissue contrast than CT, but it lacks electron density information needed for dose calculation. This work assesses the feasibility of using pseudo-CT (pCT) generated from T1w/T2w MR for proton treatment planning, where proton range comparisons are performed between standard CT and pCT. MATERIAL AND METHODS: MR and CT data from 14 glioblastoma patients were used in this study. The pCT was generated by using conversion libraries obtained from tissue segmentation and anatomical regioning of the T1w/T2w MR. For each patient, a plan consisting of three 18 Gy beams was designed on the pCT, for a total of 42 analyzed beams. The plan was then transferred onto the CT that represented the ground truth. Range shift (RS) between pCT and CT was computed at R80 over 10 slices. The acceptance threshold for RS was according to clinical guidelines of two institutions. A γ-index test was also performed on the total dose for each patient. RESULTS: Mean absolute error and bias for the pCT were 124 ± 10 and -16 ± 26 Hounsfield Units (HU), respectively. The median and interquartile range of RS was 0.5 and 1.4 mm, with highest absolute value being 4.4 mm. Of the 42 beams, 40 showed RS less than the clinical range margin. The two beams with larger RS were both in the cranio-caudal direction and had segmentation errors due to the partial volume effect, leading to misassignment of the HU. CONCLUSIONS: This study showed the feasibility of using T1w and T2w MRI to generate a pCT for proton therapy treatment, thus avoiding the use of a planning CT and allowing better target definition and possibilities for online adaptive therapies. Further improvements of the methodology are still required to improve the conversion from MRI intensities to HUs.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Glioblastoma/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Terapia de Protones/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Algoritmos , Neoplasias Encefálicas/radioterapia , Estudios de Cohortes , Glioblastoma/radioterapia , Humanos , Procesamiento de Imagen Asistido por Computador , Protones , Reproducibilidad de los Resultados , Cráneo/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos
9.
Neuroimage ; 147: 346-359, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-27988322

RESUMEN

AIM: To accurately quantify the radioactivity concentration measured by PET, emission data need to be corrected for photon attenuation; however, the MRI signal cannot easily be converted into attenuation values, making attenuation correction (AC) in PET/MRI challenging. In order to further improve the current vendor-implemented MR-AC methods for absolute quantification, a number of prototype methods have been proposed in the literature. These can be categorized into three types: template/atlas-based, segmentation-based, and reconstruction-based. These proposed methods in general demonstrated improvements compared to vendor-implemented AC, and many studies report deviations in PET uptake after AC of only a few percent from a gold standard CT-AC. Using a unified quantitative evaluation with identical metrics, subject cohort, and common CT-based reference, the aims of this study were to evaluate a selection of novel methods proposed in the literature, and identify the ones suitable for clinical use. METHODS: In total, 11 AC methods were evaluated: two vendor-implemented (MR-ACDIXON and MR-ACUTE), five based on template/atlas information (MR-ACSEGBONE (Koesters et al., 2016), MR-ACONTARIO (Anazodo et al., 2014), MR-ACBOSTON (Izquierdo-Garcia et al., 2014), MR-ACUCL (Burgos et al., 2014), and MR-ACMAXPROB (Merida et al., 2015)), one based on simultaneous reconstruction of attenuation and emission (MR-ACMLAA (Benoit et al., 2015)), and three based on image-segmentation (MR-ACMUNICH (Cabello et al., 2015), MR-ACCAR-RiDR (Juttukonda et al., 2015), and MR-ACRESOLUTE (Ladefoged et al., 2015)). We selected 359 subjects who were scanned using one of the following radiotracers: [18F]FDG (210), [11C]PiB (51), and [18F]florbetapir (98). The comparison to AC with a gold standard CT was performed both globally and regionally, with a special focus on robustness and outlier analysis. RESULTS: The average performance in PET tracer uptake was within ±5% of CT for all of the proposed methods, with the average±SD global percentage bias in PET FDG uptake for each method being: MR-ACDIXON (-11.3±3.5)%, MR-ACUTE (-5.7±2.0)%, MR-ACONTARIO (-4.3±3.6)%, MR-ACMUNICH (3.7±2.1)%, MR-ACMLAA (-1.9±2.6)%, MR-ACSEGBONE (-1.7±3.6)%, MR-ACUCL (0.8±1.2)%, MR-ACCAR-RiDR (-0.4±1.9)%, MR-ACMAXPROB (-0.4±1.6)%, MR-ACBOSTON (-0.3±1.8)%, and MR-ACRESOLUTE (0.3±1.7)%, ordered by average bias. The overall best performing methods (MR-ACBOSTON, MR-ACMAXPROB, MR-ACRESOLUTE and MR-ACUCL, ordered alphabetically) showed regional average errors within ±3% of PET with CT-AC in all regions of the brain with FDG, and the same four methods, as well as MR-ACCAR-RiDR, showed that for 95% of the patients, 95% of brain voxels had an uptake that deviated by less than 15% from the reference. Comparable performance was obtained with PiB and florbetapir. CONCLUSIONS: All of the proposed novel methods have an average global performance within likely acceptable limits (±5% of CT-based reference), and the main difference among the methods was found in the robustness, outlier analysis, and clinical feasibility. Overall, the best performing methods were MR-ACBOSTON, MR-ACMAXPROB, MR-ACRESOLUTE and MR-ACUCL, ordered alphabetically. These methods all minimized the number of outliers, standard deviation, and average global and local error. The methods MR-ACMUNICH and MR-ACCAR-RiDR were both within acceptable quantitative limits, so these methods should be considered if processing time is a factor. The method MR-ACSEGBONE also demonstrates promising results, and performs well within the likely acceptable quantitative limits. For clinical routine scans where processing time can be a key factor, this vendor-provided solution currently outperforms most methods. With the performance of the methods presented here, it may be concluded that the challenge of improving the accuracy of MR-AC in adult brains with normal anatomy has been solved to a quantitatively acceptable degree, which is smaller than the quantification reproducibility in PET imaging.


Asunto(s)
Encéfalo/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico por imagen , Demencia/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Tomografía de Emisión de Positrones/métodos , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/normas , Imagen por Resonancia Magnética/normas , Masculino , Persona de Mediana Edad , Tomografía de Emisión de Positrones/normas , Radiofármacos , Adulto Joven
10.
Ann Neurol ; 80(5): 776-790, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27686563

RESUMEN

OBJECTIVE: In multiple sclerosis (MS), using simultaneous magnetic resonance-positron emission tomography (MR-PET) imaging with 11 C-PBR28, we quantified expression of the 18kDa translocator protein (TSPO), a marker of activated microglia/macrophages, in cortex, cortical lesions, deep gray matter (GM), white matter (WM) lesions, and normal-appearing WM (NAWM) to investigate the in vivo pathological and clinical relevance of neuroinflammation. METHODS: Fifteen secondary-progressive MS (SPMS) patients, 12 relapsing-remitting MS (RRMS) patients, and 14 matched healthy controls underwent 11 C-PBR28 MR-PET. MS subjects underwent 7T T2*-weighted imaging for cortical lesion segmentation, and neurological and cognitive evaluation. 11 C-PBR28 binding was measured using normalized 60- to 90-minute standardized uptake values and volume of distribution ratios. RESULTS: Relative to controls, MS subjects exhibited abnormally high 11 C-PBR28 binding across the brain, the greatest increases being in cortex and cortical lesions, thalamus, hippocampus, and NAWM. MS WM lesions showed relatively modest TSPO increases. With the exception of cortical lesions, where TSPO expression was similar, 11 C-PBR28 uptake across the brain was greater in SPMS than in RRMS. In MS, increased 11 C-PBR28 binding in cortex, deep GM, and NAWM correlated with neurological disability and impaired cognitive performance; cortical thinning correlated with increased thalamic TSPO levels. INTERPRETATION: In MS, neuroinflammation is present in the cortex, cortical lesions, deep GM, and NAWM, is closely linked to poor clinical outcome, and is at least partly linked to neurodegeneration. Distinct inflammatory-mediated factors may underlie accumulation of cortical and WM lesions. Quantification of TSPO levels in MS could prove to be a sensitive tool for evaluating in vivo the inflammatory component of GM pathology, particularly in cortical lesions. Ann Neurol 2016;80:776-790.


Asunto(s)
Sustancia Gris/diagnóstico por imagen , Inflamación/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Esclerosis Múltiple Crónica Progresiva/diagnóstico por imagen , Esclerosis Múltiple Recurrente-Remitente/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Pirimidinas , Receptores de GABA/metabolismo , Sustancia Blanca/diagnóstico por imagen , Adulto , Femenino , Sustancia Gris/metabolismo , Humanos , Inflamación/metabolismo , Masculino , Persona de Mediana Edad , Imagen Multimodal , Esclerosis Múltiple Crónica Progresiva/metabolismo , Esclerosis Múltiple Recurrente-Remitente/metabolismo , Sustancia Blanca/metabolismo
11.
Eur J Nucl Med Mol Imaging ; 44(3): 398-407, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27573639

RESUMEN

PURPOSE: To propose an MR-based method for generating continuous-valued head attenuation maps and to assess its accuracy and reproducibility. Demonstrating that novel MR-based photon attenuation correction methods are both accurate and reproducible is essential prior to using them routinely in research and clinical studies on integrated PET/MR scanners. METHODS: Continuous-valued linear attenuation coefficient maps ("µ-maps") were generated by combining atlases that provided the prior probability of voxel positions belonging to a certain tissue class (air, soft tissue, or bone) and an MR intensity-based likelihood classifier to produce posterior probability maps of tissue classes. These probabilities were used as weights to generate the µ-maps. The accuracy of this probabilistic atlas-based continuous-valued µ-map ("PAC-map") generation method was assessed by calculating the voxel-wise absolute relative change (RC) between the MR-based and scaled CT-based attenuation-corrected PET images. To assess reproducibility, we performed pair-wise comparisons of the RC values obtained from the PET images reconstructed using the µ-maps generated from the data acquired at three time points. RESULTS: The proposed method produced continuous-valued µ-maps that qualitatively reflected the variable anatomy in patients with brain tumor and agreed well with the scaled CT-based µ-maps. The absolute RC comparing the resulting PET volumes was 1.76 ± 2.33 %, quantitatively demonstrating that the method is accurate. Additionally, we also showed that the method is highly reproducible, the mean RC value for the PET images reconstructed using the µ-maps obtained at the three visits being 0.65 ± 0.95 %. CONCLUSION: Accurate and highly reproducible continuous-valued head µ-maps can be generated from MR data using a probabilistic atlas-based approach.


Asunto(s)
Algoritmos , Cabeza/diagnóstico por imagen , Imagen por Resonancia Magnética/normas , Imagen Multimodal/normas , Tomografía de Emisión de Positrones/normas , Exactitud de los Datos , Cabeza/anatomía & histología , Humanos , Imagen por Resonancia Magnética/instrumentación , Imagen por Resonancia Magnética/métodos , Imagen Multimodal/instrumentación , Imagen Multimodal/métodos , Fotones , Tomografía de Emisión de Positrones/instrumentación , Tomografía de Emisión de Positrones/métodos
12.
Neuroimage ; 132: 334-343, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-26915497

RESUMEN

A cross-sectional group study of the effects of aging on brain metabolism as measured with (18)F-FDG-PET was performed using several different partial volume correction (PVC) methods: no correction (NoPVC), Meltzer (MZ), Müller-Gärtner (MG), and the symmetric geometric transfer matrix (SGTM) using 99 subjects aged 65-87years from the Harvard Aging Brain study. Sensitivity to parameter selection was tested for MZ and MG. The various methods and parameter settings resulted in an extremely wide range of conclusions as to the effects of age on metabolism, from almost no changes to virtually all of cortical regions showing a decrease with age. Simulations showed that NoPVC had significant bias that made the age effect on metabolism appear to be much larger and more significant than it is. MZ was found to be the same as NoPVC for liberal brain masks; for conservative brain masks, MZ showed few areas correlated with age. MG and SGTM were found to be similar; however, MG was sensitive to a thresholding parameter that can result in data loss. CSF uptake was surprisingly high at about 15% of that in gray matter. The exclusion of CSF from SGTM and MG models, which is almost universally done, caused a substantial loss in the power to detect age-related changes. This diversity of results reflects the literature on the metabolism of aging and suggests that extreme care should be taken when applying PVC or interpreting results that have been corrected for partial volume effects. Using the SGTM, significant age-related changes of about 7% per decade were found in frontal and cingulate cortices as well as primary visual and insular cortices.


Asunto(s)
Envejecimiento , Mapeo Encefálico/métodos , Encéfalo/metabolismo , Anciano , Anciano de 80 o más Años , Algoritmos , Femenino , Fluorodesoxiglucosa F18 , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Tomografía de Emisión de Positrones , Reproducibilidad de los Resultados , Procesamiento de Señales Asistido por Computador
13.
Arterioscler Thromb Vasc Biol ; 35(10): 2114-21, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26272938

RESUMEN

OBJECTIVE: Thrombosis is a leading cause of morbidity and mortality worldwide. Current diagnostic strategies rely on imaging modalities that are specific for distinct vascular territories, but a thrombus-specific whole-body imaging approach is still missing. Moreover, imaging techniques to assess thrombus composition are underdeveloped, although therapeutic strategies may benefit from such technology. Therefore, our goal was to test whether positron emission tomography (PET) with the fibrin-binding probe (64)Cu-FBP8 allows multisite thrombus detection and fibrin content estimation. APPROACH AND RESULTS: Thrombosis was induced in Sprague-Dawley rats (n=32) by ferric chloride application on both carotid artery and femoral vein. (64)Cu-FBP8-PET/CT imaging was performed 1, 3, or 7 days after thrombosis to detect thrombus location and to evaluate age-dependent changes in target uptake. Ex vivo biodistribution, autoradiography, and histopathology were performed to validate imaging results. Arterial and venous thrombi were localized on fused PET/CT images with high accuracy (97.6%; 95% confidence interval, 92-100). A single whole-body PET/MR imaging session was sufficient to reveal the location of both arterial and venous thrombi after (64)Cu-FBP8 administration. PET imaging showed that probe uptake was greater in younger clots than in older ones for both arterial and venous thrombosis (P<0.0001). Quantitative histopathology revealed an age-dependent reduction of thrombus fibrin content (P<0.001), consistent with PET results. Biodistribution and autoradiography further confirmed the imaging findings. CONCLUSIONS: We demonstrated that (64)Cu-FBP8-PET is a feasible approach for whole-body thrombus detection and that molecular imaging of fibrin can provide, noninvasively, insight into clot composition.


Asunto(s)
Radioisótopos de Cobre , Procesamiento de Imagen Asistido por Computador/métodos , Tomografía de Emisión de Positrones/métodos , Trombosis de la Vena/diagnóstico por imagen , Imagen de Cuerpo Entero/métodos , Animales , Arteriopatías Oclusivas/diagnóstico por imagen , Arteriopatías Oclusivas/patología , Biopsia con Aguja , Modelos Animales de Enfermedad , Fibrina/metabolismo , Inmunohistoquímica , Masculino , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Sensibilidad y Especificidad , Trombosis de la Vena/patología
14.
Brain ; 138(Pt 3): 604-15, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25582579

RESUMEN

Although substantial evidence has established that microglia and astrocytes play a key role in the establishment and maintenance of persistent pain in animal models, the role of glial cells in human pain disorders remains unknown. Here, using the novel technology of integrated positron emission tomography-magnetic resonance imaging and the recently developed radioligand (11)C-PBR28, we show increased brain levels of the translocator protein (TSPO), a marker of glial activation, in patients with chronic low back pain. As the Ala147Thr polymorphism in the TSPO gene affects binding affinity for (11)C-PBR28, nine patient-control pairs were identified from a larger sample of subjects screened and genotyped, and compared in a matched-pairs design, in which each patient was matched to a TSPO polymorphism-, age- and sex-matched control subject (seven Ala/Ala and two Ala/Thr, five males and four females in each group; median age difference: 1 year; age range: 29-63 for patients and 28-65 for controls). Standardized uptake values normalized to whole brain were significantly higher in patients than controls in multiple brain regions, including thalamus and the putative somatosensory representations of the lumbar spine and leg. The thalamic levels of TSPO were negatively correlated with clinical pain and circulating levels of the proinflammatory citokine interleukin-6, suggesting that TSPO expression exerts pain-protective/anti-inflammatory effects in humans, as predicted by animal studies. Given the putative role of activated glia in the establishment and or maintenance of persistent pain, the present findings offer clinical implications that may serve to guide future studies of the pathophysiology and management of a variety of persistent pain conditions.


Asunto(s)
Encéfalo/patología , Dolor Crónico/patología , Neuroglía/patología , Adulto , Anciano , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Estudios de Casos y Controles , Dolor Crónico/diagnóstico por imagen , Dolor Crónico/genética , Femenino , Genotipo , Humanos , Interleucina-6/sangre , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Neuroglía/diagnóstico por imagen , Polimorfismo de Nucleótido Simple/genética , Tomografía de Emisión de Positrones , Pirimidinas , Receptores de GABA/genética , Receptores de GABA/metabolismo , Estadística como Asunto
16.
Eur J Nucl Med Mol Imaging ; 41(8): 1574-84, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24652234

RESUMEN

PURPOSE: The objective of this study was to evaluate the performance of the built-in MR-based attenuation correction (MRAC) included in the combined whole-body Ingenuity TF PET/MR scanner and compare it to the performance of CT-based attenuation correction (CTAC) as the gold standard. METHODS: Included in the study were 26 patients who underwent clinical whole-body FDG PET/CT imaging and subsequently PET/MR imaging (mean delay 100 min). Patients were separated into two groups: the alpha group (14 patients) without MR coils during PET/MR imaging and the beta group (12 patients) with MR coils present (neurovascular, spine, cardiac and torso coils). All images were coregistered to the same space (PET/MR). The two PET images from PET/MR reconstructed using MRAC and CTAC were compared by voxel-based and region-based methods (with ten regions of interest, ROIs). Lesions were also compared by an experienced clinician. RESULTS: Body mass index and lung density showed significant differences between the alpha and beta groups. Right and left lung densities were also significantly different within each group. The percentage differences in uptake values using MRAC in relation to those using CTAC were greater in the beta group than in the alpha group (alpha group -0.2 ± 33.6%, R(2) = 0.98, p < 0.001; beta group 10.31 ± 69.86%, R(2) = 0.97, p < 0.001). CONCLUSION: In comparison to CTAC, MRAC led to underestimation of the PET values by less than 10% on average, although some ROIs and lesions did differ by more (including the spine, lung and heart). The beta group (imaged with coils present) showed increased overall PET quantification as well as increased variability compared to the alpha group (imaged without coils). PET data reconstructed with MRAC and CTAC showed some differences, mostly in relation to air pockets, metallic implants and attenuation differences in large bone areas (such as the pelvis and spine) due to the segmentation limitation of the MRAC method.


Asunto(s)
Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Imagen Multimodal/métodos , Tomografía de Emisión de Positrones/métodos , Tomografía Computarizada por Rayos X/métodos , Imagen de Cuerpo Entero/métodos , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad
17.
Eur J Nucl Med Mol Imaging ; 41(5): 934-45, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24442596

RESUMEN

PURPOSE: There is evidence that the link between obesity and cardiovascular disease might relate to inflammation in both fat tissue and the arterial wall. (18)F-FDG uptake on PET is a surrogate marker of vessel wall inflammation. The aim of the study was to measure FDG uptake in both regions using PET and identify links between adipose and arterial inflammation. METHODS: Included in the study were 173 cardiovascular patients who were prospectively imaged with FDG PET/CT. Arterial FDG uptake was measured in the carotid arteries and ascending aorta. The same was done in fat tissue in the neck, the presternal region (both subcutaneous) and the pericardium. FDG uptake was quantified as average maximal target-to-background ratio (mean TBR max). Multivariate regression analyses were performed to identify significant associations between arterial and adipose tissue FDG uptake and clinical variables as given by the standardized correlation coefficient (ß). RESULTS: FDG uptake values in all fat tissue regions were highly predictive of vascular FDG uptake in both the carotids (ß 0.262, p < 0.0001, in the neck subcutaneous region) and aorta (ß 0.22, p = 0.008, in the chest pericardial region; ß 0.193, p = 0.019, in the chest subcutaneous region). Obesity was significantly associated with elevated FDG uptake in adipose tissue (ß 0.470, p < 0.0001, in the neck subcutaneous region; ß 0.619, p = 0.028, in the chest subcutaneous region; ß 0.978, p = 0.035, in the chest pericardial region). CONCLUSION: FDG uptake in diverse fat tissue regions was significantly associated with arterial FDG uptake, a reasonable surrogate of inflammation. Increasing body weight significantly predicted the level of fatty inflammation. FDG PET therefore provides imaging evidence of an inflammatory link between fat tissue and the vasculature in patients with cardiovascular disease.


Asunto(s)
Tejido Adiposo/diagnóstico por imagen , Arterias/patología , Enfermedades Cardiovasculares/diagnóstico por imagen , Imagen Multimodal , Obesidad/diagnóstico por imagen , Tomografía de Emisión de Positrones , Tomografía Computarizada por Rayos X , Tejido Adiposo/patología , Anciano , Arterias/diagnóstico por imagen , Enfermedades Cardiovasculares/patología , Femenino , Fluorodesoxiglucosa F18 , Humanos , Inflamación/diagnóstico por imagen , Masculino , Persona de Mediana Edad , Obesidad/patología , Pericardio/diagnóstico por imagen , Pericardio/patología , Estudios Prospectivos , Radiofármacos
18.
medRxiv ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38978675

RESUMEN

Purpose: This study presents the biodistribution, clearance and dosimetry estimates of [64Cu]Fibrin Binding Probe #8 ([64Cu]FBP8) in healthy subjects. Procedures: This prospective study included 8 healthy subjects to evaluate biodistribution, safety and dosimetry estimates of [64Cu]FBP8, a fibrin-binding positron emission tomography (PET) probe. All subjects underwent up to 3 sessions of PET/Magnetic Resonance Imaging (PET/MRI) 0-2 hours, 4h and 24h post injection. Dosimetry estimates were obtained using OLINDA 2.2 software. Results: Subjects were injected with ~400 MBq of [64Cu]FBP8. Subjects did not experience adverse effects due to the injection of the probe. [64Cu]FBP8 PET images demonstrated fast blood clearance (half-life = 67 min) and renal excretion of the probe, showing low background signal across the body. The organs with the higher doses were: the urinary bladder (0.075 vs. 0.091 mGy/MBq for males and females, respectively); the kidneys (0.050 vs. 0.056 mGy/MBq respectively); and the liver (0.027 vs. 0.035 mGy/MBq respectively). The combined mean effective dose for males and females was 0.016 ± 0.0029 mSv/MBq, lower than the widely used [18F]fluorodeoxyglucose ([18F]FDG, 0.020mSv/MBq). Conclusions: This study demonstrates the following properties of the [64Cu]FBP8 probe: low dosimetry estimates; fast blood clearance and renal excretion; low background signal; and whole-body acquisition within 20 minutes in a single session. These properties provide the basis for [64Cu]FBP8 to be an excellent candidate for whole-body non-invasive imaging of fibrin, an important driver/feature in many cardiovascular, oncological and neurological conditions.

19.
Int J Cardiovasc Imaging ; 40(2): 213-224, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37891450

RESUMEN

PURPOSE: Mitral valve prolapse (MVP) is associated with left ventricle (LV) fibrosis, including the papillary muscles (PM), which is in turn linked to malignant arrhythmias. This study aims to evaluate comprehensive tissue characterization of the PM by cardiovascular magnetic resonance (CMR) imaging and its association with LV fibrosis observed by intraoperative biopsies. METHODS: MVP patients with indication for surgery due to severe mitral regurgitation (n = 19) underwent a preoperative CMR with characterization of the PM: dark-appearance on cine, T1 mapping, conventional bright blood (BB) and dark blood (DB) late gadolinium enhancement (LGE). CMR T1 mapping was performed on 21 healthy volunteers as controls. LV inferobasal myocardial biopsies were obtained in MVP patients and compared to CMR findings. RESULTS: MVP patients (54 ± 10 years old, 14 male) had a dark-appearance of the PM with higher native T1 and extracellular volume (ECV) values compared with healthy volunteers (1096 ± 78ms vs. 994 ± 54ms and 33.9 ± 5.6% vs. 25.9 ± 3.1%, respectively, p < 0.001). Seventeen MVP patients (89.5%) had fibrosis by biopsy. BB-LGE + in LV and PM was identified in 5 (26.3%) patients, while DB-LGE + was observed in LV in 9 (47.4%) and in PM in 15 (78.9%) patients. DB-LGE + in PM was the only technique that showed no difference with detection of LV fibrosis by biopsy. Posteromedial PM was more frequently affected than the anterolateral (73.7% vs. 36.8%, p = 0.039) and correlated with biopsy-proven LV fibrosis (Rho 0.529, p = 0.029). CONCLUSIONS: CMR imaging in MVP patients referred for surgery shows a dark-appearance of the PM with higher T1 and ECV values compared with healthy volunteers. The presence of a positive DB-LGE at the posteromedial PM by CMR may serve as a better predictor of biopsy-proven LV inferobasal fibrosis than conventional CMR techniques.


Asunto(s)
Prolapso de la Válvula Mitral , Humanos , Masculino , Adulto , Persona de Mediana Edad , Prolapso de la Válvula Mitral/diagnóstico por imagen , Prolapso de la Válvula Mitral/cirugía , Músculos Papilares/patología , Ventrículos Cardíacos , Medios de Contraste , Valor Predictivo de las Pruebas , Gadolinio , Fibrosis , Imagen por Resonancia Cinemagnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA