Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Hum Genet ; 143(3): 437-453, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38520561

RESUMEN

General transcription factor IIIC subunit 5 (GTF3C5) encodes transcription factor IIIC63 (TFIIIC63). It binds to DNA to recruit another transcription factor, TFIIIB, and RNA polymerase III (Pol III) to mediate the transcription of small noncoding RNAs, such as tRNAs. Here, we report four individuals from three families presenting with a multisystem developmental disorder phenotype with biallelic variants in GTF3C5. The overlapping features include growth retardation, developmental delay, intellectual disability, dental anomalies, cerebellar malformations, delayed bone age, skeletal anomalies, and facial dysmorphism. Using lymphoblastoid cell lines (LCLs) from two affected individuals, we observed a reduction in TFIIIC63 protein levels compared to control LCLs. Genome binding of TFIIIC63 protein is also reduced in LCL from one of the affected individuals. Additionally, approximately 40% of Pol III binding regions exhibited reduction in the level of Pol III occupancy in the mutant genome relative to the control, while approximately 54% of target regions showed comparable levels of Pol III occupancy between the two, indicating partial impairment of Pol III occupancy in the mutant genome. Yeasts with subject-specific variants showed temperature sensitivity and impaired growth, supporting the notion that the identified variants have deleterious effects. gtf3c5 mutant zebrafish showed developmental defects, including a smaller body, head, and eyes. Taken together, our data show that GTF3C5 plays an important role in embryonic development, and that biallelic variants in this gene cause a multisystem developmental disorder. Our study adds GTF3C5-related disorder to the growing list of genetic disorders associated with Pol III transcription machinery.


Asunto(s)
Discapacidades del Desarrollo , ARN Polimerasa III , Factores de Transcripción TFIII , Animales , Niño , Preescolar , Femenino , Humanos , Masculino , Alelos , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/patología , Discapacidad Intelectual/genética , Mutación , Linaje , Fenotipo , ARN Polimerasa III/genética , ARN Polimerasa III/metabolismo , Factores de Transcripción TFII/genética , Factores de Transcripción TFII/metabolismo , Factores de Transcripción TFIII/genética , Factores de Transcripción TFIII/metabolismo , Transcripción Genética , Pez Cebra/genética
2.
NPJ Genom Med ; 9(1): 5, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38212313

RESUMEN

Kagami-Ogata syndrome is a rare imprinting disorder and its phenotypic overlap with multiple different etiologies hampers diagnosis. Genetic etiologies include paternal uniparental isodisomy (upd(14)pat), maternal allele deletions of differentially methylated regions (DMR) in 14q32.2 or pure primary epimutations. We report a patient with Kagami-Ogata syndrome and an atypical diagnostic odyssey with several negative standard-of-care genetic tests followed by epigenetic testing using methylation microarray and a targeted analysis of whole-genome sequencing to reveal a 203 bp deletion involving the MEG3 transcript and MEG3:TSS-DMR. Long-read sequencing enabled the simultaneous detection of the deletion, phasing, and biallelic hypermethylation of the MEG3:TSS-DMR region in a single assay. This case highlights the challenges in the sequential genetic testing paradigm, the utility of long-read sequencing as a single comprehensive diagnostic assay, and the smallest reported deletion causing Kagami-Ogata syndrome allowing important insights into the mechanism of imprinting effects at this locus.

3.
Orphanet J Rare Dis ; 19(1): 107, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459574

RESUMEN

BACKGROUND: Pallister-Killian syndrome (PKS) is a rare genetic disorder caused by mosaic tetrasomy of 12p with wide neurological involvement. Intellectual disability, developmental delay, behavioral problems, epilepsy, sleep disturbances, and brain malformations have been described in most individuals, with a broad phenotypic spectrum. This observational study, conducted through brain MRI scan analysis on a cohort of patients with genetically confirmed PKS, aims to systematically investigate the neuroradiological features of this syndrome and identify the possible existence of a typical pattern. Moreover, a literature review differentiating the different types of neuroimaging data was conducted for comparison with our population. RESULTS: Thirty-one individuals were enrolled (17 females/14 males; age range 0.1-17.5 years old at first MRI). An experienced pediatric neuroradiologist reviewed brain MRIs, blindly to clinical data. Brain abnormalities were observed in all but one individual (compared to the 34% frequency found in the literature review). Corpus callosum abnormalities were found in 20/30 (67%) patients: 6 had callosal hypoplasia; 8 had global hypoplasia with hypoplastic splenium; 4 had only hypoplastic splenium; and 2 had a thin corpus callosum. Cerebral hypoplasia/atrophy was found in 23/31 (74%) and ventriculomegaly in 20/31 (65%). Other frequent features were the enlargement of the cisterna magna in 15/30 (50%) and polymicrogyria in 14/29 (48%). Conversely, the frequency of the latter was found to be 4% from the literature review. Notably, in our population, polymicrogyria was in the perisylvian area in all 14 cases, and it was bilateral in 10/14. CONCLUSIONS: Brain abnormalities are very common in PKS and occur much more frequently than previously reported. Bilateral perisylvian polymicrogyria was a main aspect of our population. Our findings provide an additional tool for early diagnosis.Further studies to investigate the possible correlations with both genotype and phenotype may help to define the etiopathogenesis of the neurologic phenotype of this syndrome.


Asunto(s)
Encefalopatías , Trastornos de los Cromosomas , Polimicrogiria , Masculino , Femenino , Humanos , Niño , Lactante , Preescolar , Adolescente , Trastornos de los Cromosomas/diagnóstico por imagen , Trastornos de los Cromosomas/genética , Neuroimagen , Encéfalo/diagnóstico por imagen , Cromosomas Humanos Par 12 , Estudios Observacionales como Asunto
4.
medRxiv ; 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38260255

RESUMEN

SPOUT1/CENP-32 encodes a putative SPOUT RNA methyltransferase previously identified as a mitotic chromosome associated protein. SPOUT1/CENP-32 depletion leads to centrosome detachment from the spindle poles and chromosome misalignment. Aided by gene matching platforms, we identified 24 individuals with neurodevelopmental delays from 18 families with bi-allelic variants in SPOUT1/CENP-32 detected by exome/genome sequencing. Zebrafish spout1/cenp-32 mutants showed reduction in larval head size with concomitant apoptosis likely associated with altered cell cycle progression. In vivo complementation assays in zebrafish indicated that SPOUT1/CENP-32 missense variants identified in humans are pathogenic. Crystal structure analysis of SPOUT1/CENP-32 revealed that most disease-associated missense variants mapped to the catalytic domain. Additionally, SPOUT1/CENP-32 recurrent missense variants had reduced methyltransferase activity in vitro and compromised centrosome tethering to the spindle poles in human cells. Thus, SPOUT1/CENP-32 pathogenic variants cause an autosomal recessive neurodevelopmental disorder: SpADMiSS ( SPOUT1 Associated Development delay Microcephaly Seizures Short stature) underpinned by mitotic spindle organization defects and consequent chromosome segregation errors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA