Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Biochem Biophys Res Commun ; 482(4): 802-807, 2017 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-27889611

RESUMEN

Wilms' tumor gene 1 (WT1) is a zinc finger transcription factor that has been implicated as an oncogene in leukemia and several other malignancies. When investigating possible gene expression network partners of WT1 in a large acute myeloid leukemia (AML) patient cohort, one of the genes with the highest correlation to WT1 was quinolinate phosphoribosyltransferase (QPRT), a key enzyme in the de novo nicotinamide adenine dinucleotide (NAD+) synthesis pathway. To investigate the possible relationship between WT1 and QPRT, we overexpressed WT1 in hematopoietic progenitor cells and cell lines, resulting in an increase of QPRT expression. WT1 knock-down gave a corresponding decrease in QPRT gene and protein expression. Chromatin-immunoprecipitation revealed WT1 binding to a conserved site in the first intron of the QPRT gene. Upon overexpression in leukemic K562 cells, QPRT conferred partial resistance to the anti-leukemic drug imatinib, indicating possible anti-apoptotic functions, consistent with previous reports on glioma cells. Interestingly, the rescue effect of QPRT overexpression was not correlated to increased NAD + levels, suggesting NAD + independent mechanisms. We conclude that QPRT, encoding a protein with anti-apoptotic properties, is a novel and direct target gene of WT1 in leukemic cells.


Asunto(s)
Regulación Leucémica de la Expresión Génica , Leucemia Mieloide Aguda/genética , Pentosiltransferasa/genética , Proteínas WT1/genética , Apoptosis , Secuencia de Bases , Línea Celular Tumoral , Genes del Tumor de Wilms , Humanos , Intrones , Células K562 , Leucemia Mieloide Aguda/metabolismo , NAD/metabolismo , Pentosiltransferasa/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Activación Transcripcional , Proteínas WT1/metabolismo
2.
Haematologica ; 102(2): 336-345, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27612989

RESUMEN

The zinc finger transcription factor Wilms tumor gene 1 (WT1) acts as an oncogene in acute myeloid leukemia. A naturally occurring alternative splice event between zinc fingers three and four, removing or retaining three amino acids (±KTS), is believed to change the DNA binding affinity of WT1, although there are conflicting data regarding the binding affinity and motifs of the different isoforms. Increased expression of the WT1 -KTS isoform at the expense of the WT1 +KTS isoform is associated with poor prognosis in acute myeloid leukemia. We determined the genome-wide binding pattern of WT1 -KTS and WT1 +KTS in leukemic K562 cells by chromatin immunoprecipitation and deep sequencing. We discovered that the WT1 -KTS isoform predominantly binds close to transcription start sites and to enhancers, in a similar fashion to other transcription factors, whereas WT1 +KTS binding is enriched within gene bodies. We observed a significant overlap between WT1 -KTS and WT1 +KTS target genes, despite the binding sites being distinct. Motif discovery revealed distinct binding motifs for the isoforms, some of which have been previously reported as WT1 binding sites. Additional analyses showed that both WT1 -KTS and WT1 +KTS target genes are more likely to be transcribed than non-targets, and are involved in cell proliferation, cell death, and development. Our study provides evidence that WT1 -KTS and WT1 +KTS share target genes yet still bind distinct locations, indicating isoform-specific regulation in transcription of genes related to cell proliferation and differentiation, consistent with the involvement of WT1 in acute myeloid leukemia.


Asunto(s)
Empalme Alternativo , Regulación Leucémica de la Expresión Génica , Leucemia/genética , Leucemia/metabolismo , Proteínas WT1/genética , Proteínas WT1/metabolismo , Sitios de Unión , Inmunoprecipitación de Cromatina , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Motivos de Nucleótidos , Unión Proteica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Sitio de Iniciación de la Transcripción
3.
Mol Cancer ; 13: 215, 2014 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-25216995

RESUMEN

BACKGROUND: The DEK gene is highly expressed in a wide range of cancer cells, and a recurrent translocation partner in acute myeloid leukemia. While DEK has been identified as one of the most abundant proteins in human chromatin, its function and binding properties are not fully understood. METHODS: We performed ChIP-seq analysis in the myeloid cell line U937 and coupled it with epigenetic and gene expression analysis to explore the genome-wide binding pattern of DEK and its role in gene regulation. RESULTS: We show that DEK preferentially binds to open chromatin, with a low degree of DNA methylation and scarce in the heterochromatin marker H3K9me(3) but rich in the euchromatin marks H3K4me(2/3), H3K27ac and H3K9ac. More specifically, DEK binding is predominantly located at the transcription start sites of highly transcribed genes and a comparative analysis with previously established transcription factor binding patterns shows a similarity with that of RNA polymerase II. Further bioinformatic analysis demonstrates that DEK mainly binds to genes that are ubiquitously expressed across tissues. The functional significance of DEK binding was demonstrated by knockdown of DEK by shRNA, resulting in both significant upregulation and downregulation of DEK-bound genes. CONCLUSIONS: We find that DEK binds to transcription start sites with a dual role in activation and repression of highly and ubiquitously expressed genes.


Asunto(s)
Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Regulación de la Expresión Génica , Células Mieloides/metabolismo , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/metabolismo , Transcripción Genética , Sitios de Unión , Células Cultivadas , Cromatina/metabolismo , Metilación de ADN , Epigénesis Genética , Perfilación de la Expresión Génica , Genoma Humano , Histonas/metabolismo , Humanos , Proteínas de Unión a Poli-ADP-Ribosa , Regiones Promotoras Genéticas , ARN Polimerasa II/metabolismo , Análisis de Secuencia de ADN
4.
Bioinformatics ; 29(4): 511-2, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23267175

RESUMEN

SUMMARY: Graphical Gaussian models (GGMs) are a promising approach to identify gene regulatory networks. Such models can be robustly inferred by solving the sparse inverse covariance selection (SICS) problem. With the high dimensionality of genomics data, fast methods capable of solving large instances of SICS are needed. We developed a novel network modeling tool, Ultranet, that solves the SICS problem with significantly improved efficiency. Ultranet combines a range of mathematical and programmatical techniques, exploits the structure of the SICS problem and enables computation of genome-scale GGMs without compromising analytic accuracy. AVAILABILITY AND IMPLEMENTATION: Ultranet is implemented in C++ and available at www.broadinstitute.org/ultranet.


Asunto(s)
Redes Reguladoras de Genes , Programas Informáticos , Genómica , Humanos , Modelos Genéticos , Distribución Normal , Transcriptoma
5.
Commun Biol ; 2: 262, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31341961

RESUMEN

The landscape of somatic acquired deletions in cancer cells is shaped by positive and negative selection. Recurrent deletions typically target tumor suppressor, leading to positive selection. Simultaneously, loss of a nearby essential gene can lead to negative selection, and introduce latent vulnerabilities specific to cancer cells. Here we show that, under basic assumptions on positive and negative selection, deletion limitation gives rise to a statistical pattern where the frequency of homozygous deletions decreases approximately linearly between the deletion target gene and the nearest essential genes. Using DNA copy number data from 9,744 human cancer specimens, we demonstrate that linear deletion limitation exists and exposes deletion-limiting genes for seven known deletion targets (CDKN2A, RB1, PTEN, MAP2K4, NF1, SMAD4, and LINC00290). Downstream analysis of pooled CRISPR/Cas9 data provide further evidence of essentiality. Our results provide further insight into how the deletion landscape is shaped and identify potentially targetable vulnerabilities.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Eliminación de Gen , Genes Esenciales , Homocigoto , Neoplasias Pulmonares/genética , Línea Celular Tumoral , ADN/genética , Dosificación de Gen , Genoma Humano , Células HEK293 , Humanos , Modelos Lineales , ARN/metabolismo
6.
Oncotarget ; 8(50): 87136-87150, 2017 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-29152069

RESUMEN

The Wilms' tumor gene 1 (WT1) is recurrently mutated in acute myeloid leukemia. Mutations and high expression of WT1 associate with a poor prognosis. In mice, WT1 cooperates with the RUNX1/RUNX1T1 (AML1/ETO) fusion gene in the induction of acute leukemia, further emphasizing a role for WT1 in leukemia development. Molecular mechanisms for WT1 are, however, incompletely understood. Here, we identify the transcriptional coregulator NAB2 as a target gene of WT1. Analysis of gene expression profiles of leukemic samples revealed a positive correlation between the expression of WT1 and NAB2, as well as a non-zero partial correlation. Overexpression of WT1 in hematopoietic cells resulted in increased NAB2 levels, while suppression of WT1 decreased NAB2 expression. WT1 bound and transactivated the proximal NAB2 promoter, as shown by ChIP and reporter experiments, respectively. ChIP experiments also revealed that WT1 can recruit NAB2 to the IRF8 promoter, thus modulating the transcriptional activity of WT1, as shown by reporter experiments. Our results implicate NAB2 as a previously unreported target gene of WT1 and that NAB2 acts as a transcriptional cofactor of WT1.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA