Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Nature ; 597(7874): 92-96, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34433968

RESUMEN

Atherosclerotic cardiovascular disease causes heart attacks and strokes, which are the leading causes of mortality worldwide1. The formation of atherosclerotic plaques is initiated when low-density lipoproteins bind to heparan-sulfate proteoglycans (HSPGs)2 and become trapped in the subendothelial space of large and medium size arteries, which leads to chronic inflammation and remodelling of the artery wall2. A proliferation-inducing ligand (APRIL) is a cytokine that binds to HSPGs3, but the physiology of this interaction is largely unknown. Here we show that genetic ablation or antibody-mediated depletion of APRIL aggravates atherosclerosis in mice. Mechanistically, we demonstrate that APRIL confers atheroprotection by binding to heparan sulfate chains of heparan-sulfate proteoglycan 2 (HSPG2), which limits the retention of low-density lipoproteins, accumulation of macrophages and formation of necrotic cores. Indeed, antibody-mediated depletion of APRIL in mice expressing heparan sulfate-deficient HSPG2 had no effect on the development of atherosclerosis. Treatment with a specific anti-APRIL antibody that promotes the binding of APRIL to HSPGs reduced experimental atherosclerosis. Furthermore, the serum levels of a form of human APRIL protein that binds to HSPGs, which we termed non-canonical APRIL (nc-APRIL), are associated independently of traditional risk factors with long-term cardiovascular mortality in patients with atherosclerosis. Our data reveal properties of APRIL that have broad pathophysiological implications for vascular homeostasis.


Asunto(s)
Aterosclerosis/metabolismo , Aterosclerosis/prevención & control , Proteoglicanos de Heparán Sulfato/metabolismo , Miembro 13 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/metabolismo , Animales , Antígeno de Maduración de Linfocitos B/metabolismo , Sitios de Unión , Enfermedades Cardiovasculares/sangre , Enfermedades Cardiovasculares/mortalidad , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Unión Proteica , Proteína Activadora Transmembrana y Interactiva del CAML/metabolismo , Miembro 13 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/sangre , Miembro 13 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/deficiencia
2.
Eur Heart J ; 44(14): 1216-1230, 2023 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-36478058

RESUMEN

The advent of single-cell biology opens a new chapter for understanding human biological processes and for diagnosing, monitoring, and treating disease. This revolution now reaches the field of cardiovascular disease (CVD). New technologies to interrogate CVD samples at single-cell resolution are allowing the identification of novel cell communities that are important in shaping disease development and direct towards new therapeutic strategies. These approaches have begun to revolutionize atherosclerosis pathology and redraw our understanding of disease development. This review discusses the state-of-the-art of single-cell analysis of atherosclerotic plaques, with a particular focus on human lesions, and presents the current resolution of cellular subpopulations and their heterogeneity and plasticity in relation to clinically relevant features. Opportunities and pitfalls of current technologies as well as the clinical impact of single-cell technologies in CVD patient care are highlighted, advocating for multidisciplinary and international collaborative efforts to join the cellular dots of CVD.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Placa Aterosclerótica , Humanos , Aterosclerosis/patología , Placa Aterosclerótica/patología
3.
Biochem Soc Trans ; 49(5): 2101-2111, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34495326

RESUMEN

In contrast with the heart, the adult mammalian vasculature retains significant remodelling capacity, dysregulation of which is implicated in disease development. In particular, vascular smooth muscle cells (VSMCs) play major roles in the pathological vascular remodelling characteristic of atherosclerosis, restenosis, aneurysm and pulmonary arterial hypertension. Clonal lineage tracing revealed that the VSMC-contribution to disease results from the hyperproliferation of few pre-existing medial cells and suggested that VSMC-derived cells from the same clone can adopt diverse phenotypes. Studies harnessing the powerful combination of lineage tracing and single-cell transcriptomics have delineated the substantial diversity of VSMC-derived cells in vascular lesions, which are proposed to have both beneficial and detrimental effects on disease severity. Computational analyses further suggest that the pathway from contractile VSMCs in healthy arteries to phenotypically distinct lesional cells consists of multiple, potentially regulatable, steps. A better understanding of how individual steps are controlled could reveal effective therapeutic strategies to minimise VSMC functions that drive pathology whilst maintaining or enhancing their beneficial roles. Here we review current knowledge of VSMC plasticity and highlight important questions that should be addressed to understand how specific stages of VSMC investment and phenotypic diversification are controlled. Implications for developing therapeutic strategies in pathological vascular remodelling are discussed and we explore how cutting-edge approaches could be used to elucidate the molecular mechanisms underlying VSMC regulation.


Asunto(s)
Aterosclerosis/genética , Aterosclerosis/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Fenotipo , Transducción de Señal/genética , Animales , Linaje de la Célula/genética , Plasticidad de la Célula/genética , Proliferación Celular/genética , Expresión Génica , Regulación de la Expresión Génica , Humanos
4.
Development ; 144(4): 567-579, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28087629

RESUMEN

Jmjd2 H3K9 demethylases cooperate in promoting mouse embryonic stem cell (ESC) identity. However, little is known about their importance at the exit of ESC pluripotency. Here, we reveal that Jmjd2c facilitates this process by stabilising the assembly of mediator-cohesin complexes at lineage-specific enhancers. Functionally, we show that Jmjd2c is required in ESCs to initiate appropriate gene expression programs upon somatic multi-lineage differentiation. In the absence of Jmjd2c, differentiation is stalled at an early post-implantation epiblast-like stage, while Jmjd2c-knockout ESCs remain capable of forming extra-embryonic endoderm derivatives. Dissection of the underlying molecular basis revealed that Jmjd2c is re-distributed to lineage-specific enhancers during ESC priming for differentiation. Interestingly, Jmjd2c-bound enhancers are co-occupied by the H3K9-methyltransferase G9a (also known as Ehmt2), independently of its H3K9-modifying activity. Loss of Jmjd2c abrogates G9a recruitment and further destabilises loading of the mediator and cohesin components Med1 and Smc1a at newly activated and poised enhancers in ESC-derived epiblast-like cells. These findings unveil Jmjd2c and G9a as novel enhancer-associated factors, and implicate Jmjd2c as a molecular scaffold for the assembly of essential enhancer-protein complexes with an impact on timely gene activation.


Asunto(s)
Células Madre Embrionarias/citología , Elementos de Facilitación Genéticos , N-Metiltransferasa de Histona-Lisina/fisiología , Histona Demetilasas con Dominio de Jumonji/fisiología , Animales , Proteínas de Ciclo Celular/fisiología , Diferenciación Celular , Linaje de la Célula , Proteínas Cromosómicas no Histona/fisiología , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Estratos Germinativos/citología , Histonas/metabolismo , Ratones , Ratones Noqueados , Células Madre Pluripotentes/citología , Unión Proteica , Análisis de Secuencia de ARN , Cohesinas
5.
Arterioscler Thromb Vasc Biol ; 39(6): 1149-1159, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30943775

RESUMEN

Objective- Recent studies suggested the occurrence of phenotypic switching of vascular smooth muscle cells (VSMCs) during the development of aortic aneurysm (AA). However, lineage-tracing studies are still lacking, and the behavior of VSMCs during the formation of dissecting AA is poorly understood. Approach and Results- We used multicolor lineage tracing of VSMCs to track their fate after injury in murine models of Ang II (angiotensin II)-induced dissecting AA. We also addressed the direct impact of autophagy on the response of VSMCs to AA dissection. Finally, we studied the relevance of these processes to human AAs. Here, we show that a subset of medial VSMCs undergoes clonal expansion and that VSMC outgrowths are observed in the adventitia and borders of the false channel during Ang II-induced development of dissecting AA. The clonally expanded VSMCs undergo phenotypic switching with downregulation of VSMC differentiation markers and upregulation of phagocytic markers, indicative of functional changes. In particular, autophagy and endoplasmic reticulum stress responses are activated in the injured VSMCs. Loss of autophagy in VSMCs through deletion of autophagy protein 5 gene ( Atg5) increases the susceptibility of VSMCs to death, enhances endoplasmic reticulum stress activation, and promotes IRE (inositol-requiring enzyme) 1α-dependent VSMC inflammation. These alterations culminate in increased severity of aortic disease and higher incidence of fatal AA dissection in mice with VSMC-restricted deletion of Atg5. We also report increased expression of autophagy and endoplasmic reticulum stress markers in VSMCs of human dissecting AAs. Conclusions- VSMCs undergo clonal expansion and phenotypic switching in Ang II-induced dissecting AAs in mice. We also identify a critical role for autophagy in regulating VSMC death and endoplasmic reticulum stress-dependent inflammation with important consequences for aortic wall homeostasis and repair.


Asunto(s)
Aneurisma de la Aorta/patología , Disección Aórtica/patología , Autofagia , Plasticidad de la Célula , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Adulto , Anciano , Disección Aórtica/inducido químicamente , Disección Aórtica/metabolismo , Angiotensina II , Animales , Aorta/metabolismo , Aorta/patología , Aneurisma de la Aorta/inducido químicamente , Aneurisma de la Aorta/metabolismo , Proteína 5 Relacionada con la Autofagia/genética , Proteína 5 Relacionada con la Autofagia/metabolismo , Linaje de la Célula , Células Cultivadas , Modelos Animales de Enfermedad , Endorribonucleasas/metabolismo , Femenino , Humanos , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Persona de Mediana Edad , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Fenotipo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal
6.
Arterioscler Thromb Vasc Biol ; 39(11): 2289-2302, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31434493

RESUMEN

OBJECTIVE: Vascular inflammation underlies cardiovascular disease. Vascular smooth muscle cells (VSMCs) upregulate selective genes, including MMPs (matrix metalloproteinases) and proinflammatory cytokines upon local inflammation, which directly contribute to vascular disease and adverse clinical outcome. Identification of factors controlling VSMC responses to inflammation is therefore of considerable therapeutic importance. Here, we determine the role of Histone H3 lysine 9 di-methylation (H3K9me2), a repressive epigenetic mark that is reduced in atherosclerotic lesions, in regulating the VSMC inflammatory response. Approach and Results: We used VSMC-lineage tracing to reveal reduced H3K9me2 levels in VSMCs of arteries after injury and in atherosclerotic lesions compared with control vessels. Intriguingly, chromatin immunoprecipitation showed H3K9me2 enrichment at a subset of inflammation-responsive gene promoters, including MMP3, MMP9, MMP12, and IL6, in mouse and human VSMCs. Inhibition of G9A/GLP (G9A-like protein), the primary enzymes responsible for H3K9me2, significantly potentiated inflammation-induced gene induction in vitro and in vivo without altering NFκB (nuclear factor kappa-light-chain-enhancer of activated B cell) and MAPK (mitogen-activated protein kinase) signaling. Rather, reduced G9A/GLP activity enhanced inflammation-induced binding of transcription factors NFκB-p65 and cJUN to H3K9me2 target gene promoters MMP3 and IL6. Taken together, these results suggest that promoter-associated H3K9me2 directly attenuates the induction of target genes in response to inflammation in human VSMCs. CONCLUSIONS: This study implicates H3K9me2 in regulating the proinflammatory VSMC phenotype. Our findings suggest that reduced H3K9me2 in disease enhance binding of NFκB and AP-1 (activator protein-1) transcription factors at specific inflammation-responsive genes to augment proinflammatory stimuli in VSMC. Therefore, H3K9me2-regulation could be targeted clinically to limit expression of MMPs and IL6, which are induced in vascular disease.


Asunto(s)
Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/metabolismo , Epigénesis Genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Animales , Desmetilación , Expresión Génica , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Humanos , Inflamación/metabolismo , Interleucina-6/metabolismo , Masculino , Metaloproteinasas de la Matriz/metabolismo , Ratones Endogámicos C57BL , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Factor de Transcripción AP-1/metabolismo
7.
Circ Res ; 119(12): 1313-1323, 2016 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-27682618

RESUMEN

RATIONALE: Vascular smooth muscle cell (VSMC) accumulation is a hallmark of atherosclerosis and vascular injury. However, fundamental aspects of proliferation and the phenotypic changes within individual VSMCs, which underlie vascular disease, remain unresolved. In particular, it is not known whether all VSMCs proliferate and display plasticity or whether individual cells can switch to multiple phenotypes. OBJECTIVE: To assess whether proliferation and plasticity in disease is a general characteristic of VSMCs or a feature of a subset of cells. METHODS AND RESULTS: Using multicolor lineage labeling, we demonstrate that VSMCs in injury-induced neointimal lesions and in atherosclerotic plaques are oligoclonal, derived from few expanding cells. Lineage tracing also revealed that the progeny of individual VSMCs contributes to both alpha smooth muscle actin (aSma)-positive fibrous cap and Mac3-expressing macrophage-like plaque core cells. Costaining for phenotypic markers further identified a double-positive aSma+ Mac3+ cell population, which is specific to VSMC-derived plaque cells. In contrast, VSMC-derived cells generating the neointima after vascular injury generally retained the expression of VSMC markers and the upregulation of Mac3 was less pronounced. Monochromatic regions in atherosclerotic plaques and injury-induced neointima did not contain VSMC-derived cells expressing a different fluorescent reporter protein, suggesting that proliferation-independent VSMC migration does not make a major contribution to VSMC accumulation in vascular disease. CONCLUSIONS: We demonstrate that extensive proliferation of a low proportion of highly plastic VSMCs results in the observed VSMC accumulation after injury and in atherosclerotic plaques. Therapeutic targeting of these hyperproliferating VSMCs might effectively reduce vascular disease without affecting vascular integrity.


Asunto(s)
Aterosclerosis/fisiopatología , Proliferación Celular/fisiología , Músculo Liso Vascular/fisiología , Miocitos del Músculo Liso/fisiología , Neointima/fisiopatología , Lesiones del Sistema Vascular/fisiopatología , Animales , Aterosclerosis/patología , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Músculo Liso Vascular/citología , Neointima/patología , Lesiones del Sistema Vascular/patología
9.
Nature ; 467(7311): E3-4; discussion E5, 2010 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-20811409

RESUMEN

The contribution of REST to embryonic stem (ES) cell pluripotency has been uncertain. Two years ago, Singh et al. claimed that Rest(+/-) and REST knock-down ES cells expressed reduced levels of pluripotency markers, in contrast to a prior and subsequent reports. To understand the basis of this difference, we analysed the YHC334 (YHC) and RRC160 (RRC) gene-trap ES cell lines used by Singh et al., obtained directly from BayGenomics. Both REST mutant lines generated REST-betaGeo fusion proteins, but expressed pluripotency genes at levels similar to appropriately matched parental wild ES cells, consistent with expression being REST-independent.


Asunto(s)
Células Madre Embrionarias/citología , Células Madre Pluripotentes/citología , Proteínas Represoras/genética , Animales , Línea Celular , Ratones , Mutagénesis Insercional , Proteínas Recombinantes de Fusión/genética
10.
Nature ; 457(7233): E4-5; discussion E7, 2009 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-19242417

RESUMEN

The DNA-binding protein REST (also called NRSF) is a transcriptional repressor that targets many neuronal genes and is abundant in human and mouse pluripotent embryonic stem cells (ESCs). In a recent Letter to Nature, Singh et al. suggested that REST controls the self-renewal and pluripotency of ESCs, because they found that ESCs in which a single REST allele was disrupted (Fig. 1a, beta-geo-stop insertion) had reduced alkaline phosphatase activity and expressed lower levels of several pluripotency-associated genes. Here we show that partial or complete loss of functional REST protein does not abrogate ESC potential as reflected by marker gene expression. These data are consistent with earlier reports, and argue that REST is not required for maintaining ESC pluripotency.


Asunto(s)
Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Proteínas Represoras/metabolismo , Fosfatasa Alcalina/metabolismo , Animales , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Reacción en Cadena de la Polimerasa , Proteínas Represoras/genética , Reproducibilidad de los Resultados , Tretinoina/farmacología
11.
Nat Cardiovasc Res ; 3(6): 714-733, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38898928

RESUMEN

Aberrant vascular smooth muscle cell (VSMC) homeostasis and proliferation characterize vascular diseases causing heart attack and stroke. Here we elucidate molecular determinants governing VSMC proliferation by reconstructing gene regulatory networks from single-cell transcriptomics and epigenetic profiling. We detect widespread activation of enhancers at disease-relevant loci in proliferation-predisposed VSMCs. We compared gene regulatory network rewiring between injury-responsive and nonresponsive VSMCs, which suggested shared transcription factors but differing target loci between VSMC states. Through in silico perturbation analysis, we identified and prioritized previously unrecognized regulators of proliferation, including RUNX1 and TIMP1. Moreover, we showed that the pioneer transcription factor RUNX1 increased VSMC responsiveness and that TIMP1 feeds back to promote VSMC proliferation through CD74-mediated STAT3 signaling. Both RUNX1 and the TIMP1-CD74 axis were expressed in human VSMCs, showing low levels in normal arteries and increased expression in disease, suggesting clinical relevance and potential as vascular disease targets.

12.
Blood ; 117(1): 83-7, 2011 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-20876850

RESUMEN

Many lineage-specific developmental regulator genes are transcriptionally primed in embryonic stem (ES) cells; RNA Pol(II) is bound at their promoters but is prevented from productive elongation by the activity of polycomb repressive complexes (PRC) 1 and 2. This epigenetically poised state is thought to enable ES cells to rapidly execute multiple differentiation programs and is recognized by a simultaneous enrichment for trimethylation of lysine 4 and trimethylation of lysine 27 of histone H3 (bivalent chromatin) across promoter regions. Here we show that the chromatin profile of this important cohort of genes is progressively modified as ES cells differentiate toward blood-forming precursors. Surprisingly however, neural specifying genes, such as Nkx2-2, Nkx2-9, and Sox1, remain bivalent and primed even in committed hemangioblasts, as conditional deletion of PRC1 results in overt and inappropriate expression of neural genes in hemangioblasts. These data reinforce the importance of PRC1 for normal hematopoietic differentiation and reveal an unexpected epigenetic plasticity of mesoderm-committed hemangioblasts.


Asunto(s)
Células Madre Embrionarias/metabolismo , Epigénesis Genética , Hemangioblastos/fisiología , Proteínas de Homeodominio/genética , Proteínas Represoras/fisiología , Factores de Transcripción SOXB1/genética , Factores de Transcripción/genética , Animales , Western Blotting , Diferenciación Celular , Células Cultivadas , Cromatina/genética , Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN/fisiología , Células Madre Embrionarias/citología , Proteínas Fetales/genética , Proteínas Fluorescentes Verdes/genética , Histonas/genética , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodominio/antagonistas & inhibidores , Proteínas de Homeodominio/metabolismo , Integrasas/metabolismo , Ratones , Ratones Noqueados , Complejo Represivo Polycomb 1 , Proteínas del Grupo Polycomb , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción SOXB1/antagonistas & inhibidores , Factores de Transcripción SOXB1/metabolismo , Proteínas de Dominio T Box/genética , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas , Receptor 2 de Factores de Crecimiento Endotelial Vascular/fisiología , Proteínas de Pez Cebra
13.
Nat Cell Biol ; 8(5): 532-8, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16570078

RESUMEN

Epigenetic genome modifications are thought to be important for specifying the lineage and developmental stage of cells within a multicellular organism. Here, we show that the epigenetic profile of pluripotent embryonic stem cells (ES) is distinct from that of embryonic carcinoma cells, haematopoietic stem cells (HSC) and their differentiated progeny. Silent, lineage-specific genes replicated earlier in pluripotent cells than in tissue-specific stem cells or differentiated cells and had unexpectedly high levels of acetylated H3K9 and methylated H3K4. Unusually, in ES cells these markers of open chromatin were also combined with H3K27 trimethylation at some non-expressed genes. Thus, pluripotency of ES cells is characterized by a specific epigenetic profile where lineage-specific genes may be accessible but, if so, carry repressive H3K27 trimethylation modifications. H3K27 methylation is functionally important for preventing expression of these genes in ES cells as premature expression occurs in embryonic ectoderm development (Eed)-deficient ES cells. Our data suggest that lineage-specific genes are primed for expression in ES cells but are held in check by opposing chromatin modifications.


Asunto(s)
Cromatina/genética , Células Madre Pluripotentes/metabolismo , Animales , Carcinoma/genética , Línea Celular , Células Cultivadas , Momento de Replicación del ADN/genética , Regulación hacia Abajo/genética , Epigénesis Genética , Perfilación de la Expresión Génica , Marcadores Genéticos , Células Madre Hematopoyéticas/metabolismo , Ratones , Células Madre Multipotentes/metabolismo , Complejo Represivo Polycomb 2 , Proteínas Represoras/metabolismo , Linfocitos T/metabolismo
14.
Br J Pharmacol ; 2023 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-38044463

RESUMEN

BACKGROUND AND PURPOSE: Decreased aortic compliance is a precursor to numerous cardiovascular diseases. Compliance is regulated by the rigidity of the aortic wall and the vascular smooth muscle cells (VSMCs). Extracellular matrix stiffening, observed during ageing, reduces compliance. In response to increased rigidity, VSMCs generate enhanced contractile forces that result in VSMC stiffening and a further reduction in compliance. Mechanisms driving VSMC response to matrix rigidity remain poorly defined. EXPERIMENTAL APPROACH: Human aortic-VSMCs were seeded onto polyacrylamide hydrogels whose rigidity mimicked either healthy (12 kPa) or aged/diseased (72 kPa) aortae. VSMCs were treated with pharmacological agents prior to agonist stimulation to identify regulators of VSMC volume regulation. KEY RESULTS: On pliable matrices, VSMCs contracted and decreased in cell area. Meanwhile, on rigid matrices VSMCs displayed a hypertrophic-like response, increasing in area and volume. Piezo1 activation stimulated increased VSMC volume by promoting calcium ion influx and subsequent activation of PKC and aquaporin-1. Pharmacological blockade of this pathway prevented the enhanced VSMC volume response on rigid matrices whilst maintaining contractility on pliable matrices. Importantly, both piezo1 and aquaporin-1 gene expression were up-regulated during VSMC phenotypic modulation in atherosclerosis and after carotid ligation. CONCLUSIONS AND IMPLICATIONS: In response to extracellular matrix rigidity, VSMC volume is increased by a piezo1/PKC/aquaporin-1 mediated pathway. Pharmacological targeting of this pathway specifically blocks the matrix rigidity enhanced VSMC volume response, leaving VSMC contractility on healthy mimicking matrices intact. Importantly, upregulation of both piezo1 and aquaporin-1 gene expression is observed in disease relevant VSMC phenotypes.

15.
Cardiovasc Res ; 119(5): 1279-1294, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-35994249

RESUMEN

AIMS: Quiescent, differentiated adult vascular smooth muscle cells (VSMCs) can be induced to proliferate and switch phenotype. Such plasticity underlies blood vessel homeostasis and contributes to vascular disease development. Oligoclonal VSMC contribution is a hallmark of end-stage vascular disease. Here, we aim to understand cellular mechanisms underpinning generation of this VSMC oligoclonality. METHODS AND RESULTS: We investigate the dynamics of VSMC clone formation using confocal microscopy and single-cell transcriptomics in VSMC-lineage-traced animal models. We find that activation of medial VSMC proliferation occurs at low frequency after vascular injury and that only a subset of expanding clones migrate, which together drives formation of oligoclonal neointimal lesions. VSMC contribution in small atherosclerotic lesions is typically from one or two clones, similar to observations in mature lesions. Low frequency (<0.1%) of clonal VSMC proliferation is also observed in vitro. Single-cell RNA-sequencing revealed progressive cell state changes across a contiguous VSMC population at onset of injury-induced proliferation. Proliferating VSMCs mapped selectively to one of two distinct trajectories and were associated with cells showing extensive phenotypic switching. A proliferation-associated transitory state shared pronounced similarities with atypical SCA1+ VSMCs from uninjured mouse arteries and VSMCs in healthy human aorta. We show functionally that clonal expansion of SCA1+ VSMCs from healthy arteries occurs at higher rate and frequency compared with SCA1- cells. CONCLUSION: Our data suggest that activation of proliferation at low frequency is a general, cell-intrinsic feature of VSMCs. We show that rare VSMCs in healthy arteries display VSMC phenotypic switching akin to that observed in pathological vessel remodelling and that this is a conserved feature of mouse and human healthy arteries. The increased proliferation of modulated VSMCs from healthy arteries suggests that these cells respond more readily to disease-inducing cues and could drive oligoclonal VSMC expansion.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Ataxias Espinocerebelosas , Adulto , Animales , Humanos , Músculo Liso Vascular/patología , Enfermedades Cardiovasculares/patología , Proliferación Celular , Aterosclerosis/patología , Fenotipo , Ataxias Espinocerebelosas/patología , Miocitos del Músculo Liso/patología , Células Cultivadas
16.
Nat Commun ; 14(1): 7994, 2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38042913

RESUMEN

Aortic aneurysms, which may dissect or rupture acutely and be lethal, can be a part of multisystem disorders that have a heritable basis. We report four patients with deficiency of selenocysteine-containing proteins due to selenocysteine Insertion Sequence Binding Protein 2 (SECISBP2) mutations who show early-onset, progressive, aneurysmal dilatation of the ascending aorta due to cystic medial necrosis. Zebrafish and male mice with global or vascular smooth muscle cell (VSMC)-targeted disruption of Secisbp2 respectively show similar aortopathy. Aortas from patients and animal models exhibit raised cellular reactive oxygen species, oxidative DNA damage and VSMC apoptosis. Antioxidant exposure or chelation of iron prevents oxidative damage in patient's cells and aortopathy in the zebrafish model. Our observations suggest a key role for oxidative stress and cell death, including via ferroptosis, in mediating aortic degeneration.


Asunto(s)
Aneurisma de la Aorta , Pez Cebra , Humanos , Masculino , Ratones , Animales , Selenocisteína , Músculo Liso Vascular/metabolismo , Aneurisma de la Aorta/genética , Aneurisma de la Aorta/metabolismo , Selenoproteínas/genética , Miocitos del Músculo Liso/metabolismo
17.
J Am Coll Cardiol ; 81(4): 336-354, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36697134

RESUMEN

BACKGROUND: Assessing inflammatory disease activity in large vessel vasculitis (LVV) can be challenging by conventional measures. OBJECTIVES: We aimed to investigate somatostatin receptor 2 (SST2) as a novel inflammation-specific molecular imaging target in LVV. METHODS: In a prospective, observational cohort study, in vivo arterial SST2 expression was assessed by positron emission tomography/magnetic resonance imaging (PET/MRI) using 68Ga-DOTATATE and 18F-FET-ßAG-TOCA. Ex vivo mapping of the imaging target was performed using immunofluorescence microscopy; imaging mass cytometry; and bulk, single-cell, and single-nucleus RNA sequencing. RESULTS: Sixty-one participants (LVV: n = 27; recent atherosclerotic myocardial infarction of ≤2 weeks: n = 25; control subjects with an oncologic indication for imaging: n = 9) were included. Index vessel SST2 maximum tissue-to-blood ratio was 61.8% (P < 0.0001) higher in active/grumbling LVV than inactive LVV and 34.6% (P = 0.0002) higher than myocardial infarction, with good diagnostic accuracy (area under the curve: ≥0.86; P < 0.001 for both). Arterial SST2 signal was not elevated in any of the control subjects. SST2 PET/MRI was generally consistent with 18F-fluorodeoxyglucose PET/computed tomography imaging in LVV patients with contemporaneous clinical scans but with very low background signal in the brain and heart, allowing for unimpeded assessment of nearby coronary, myocardial, and intracranial artery involvement. Clinically effective treatment for LVV was associated with a 0.49 ± 0.24 (standard error of the mean [SEM]) (P = 0.04; 22.3%) reduction in the SST2 maximum tissue-to-blood ratio after 9.3 ± 3.2 months. SST2 expression was localized to macrophages, pericytes, and perivascular adipocytes in vasculitis specimens, with specific receptor binding confirmed by autoradiography. SSTR2-expressing macrophages coexpressed proinflammatory markers. CONCLUSIONS: SST2 PET/MRI holds major promise for diagnosis and therapeutic monitoring in LVV. (PET Imaging of Giant Cell and Takayasu Arteritis [PITA], NCT04071691; Residual Inflammation and Plaque Progression Long-Term Evaluation [RIPPLE], NCT04073810).


Asunto(s)
Aterosclerosis , Arteritis de Células Gigantes , Infarto del Miocardio , Arteritis de Takayasu , Humanos , Receptores de Somatostatina , Estudios Prospectivos , Fluorodesoxiglucosa F18 , Inflamación/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Imagen por Resonancia Magnética , Vasos Coronarios/patología , Aterosclerosis/diagnóstico por imagen , Radiofármacos/farmacología
18.
Sci Adv ; 8(35): eabo7958, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-36044575

RESUMEN

Endothelial cell (EC) sensing of disturbed blood flow triggers atherosclerosis, a disease of arteries that causes heart attack and stroke, through poorly defined mechanisms. The Notch pathway plays a central role in blood vessel growth and homeostasis, but its potential role in sensing of disturbed flow has not been previously studied. Here, we show using porcine and murine arteries and cultured human coronary artery EC that disturbed flow activates the JAG1-NOTCH4 signaling pathway. Light-sheet imaging revealed enrichment of JAG1 and NOTCH4 in EC of atherosclerotic plaques, and EC-specific genetic deletion of Jag1 (Jag1ECKO) demonstrated that Jag1 promotes atherosclerosis at sites of disturbed flow. Mechanistically, single-cell RNA sequencing in Jag1ECKO mice demonstrated that Jag1 suppresses subsets of ECs that proliferate and migrate. We conclude that JAG1-NOTCH4 sensing of disturbed flow enhances atherosclerosis susceptibility by regulating EC heterogeneity and that therapeutic targeting of this pathway may treat atherosclerosis.


Asunto(s)
Aterosclerosis , Proteína Jagged-1 , Placa Aterosclerótica , Receptor Notch4 , Animales , Aterosclerosis/genética , Aterosclerosis/metabolismo , Vasos Coronarios/metabolismo , Células Endoteliales/metabolismo , Humanos , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Ratones , Placa Aterosclerótica/metabolismo , Receptor Notch4/genética , Receptor Notch4/metabolismo , Transducción de Señal , Porcinos
19.
Commun Biol ; 4(1): 611, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-34021256

RESUMEN

Accumulation of vascular smooth muscle cells (VSMCs) is a hallmark of multiple vascular pathologies, including following neointimal formation after injury and atherosclerosis. However, human VSMCs in advanced atherosclerotic lesions show reduced cell proliferation, extensive and persistent DNA damage, and features of premature cell senescence. Here, we report that stress-induced premature senescence (SIPS) and stable expression of a telomeric repeat-binding factor 2 protein mutant (TRF2T188A) induce senescence of human VSMCs, associated with persistent telomeric DNA damage. VSMC senescence is associated with formation of micronuclei, activation of cGAS-STING cytoplasmic sensing, and induction of multiple pro-inflammatory cytokines. VSMC-specific TRF2T188A expression in a multicolor clonal VSMC-tracking mouse model shows no change in VSMC clonal patches after injury, but an increase in neointima formation, outward remodeling, senescence and immune/inflammatory cell infiltration or retention. We suggest that persistent telomere damage in VSMCs inducing cell senescence has a major role in driving persistent inflammation in vascular disease.


Asunto(s)
Aterosclerosis/patología , Senescencia Celular , Inflamación/patología , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Neointima/patología , Telómero/patología , Animales , Aterosclerosis/etiología , Aterosclerosis/metabolismo , Proliferación Celular , Células Cultivadas , Daño del ADN , Modelos Animales de Enfermedad , Humanos , Inflamación/etiología , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Microfilamentos/fisiología , Proteínas Musculares/fisiología , Músculo Liso Vascular/inmunología , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/inmunología , Miocitos del Músculo Liso/metabolismo , Neointima/etiología , Neointima/metabolismo , Telómero/genética , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo
20.
Atherosclerosis ; 324: 123-132, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33714552

RESUMEN

BACKGROUND AND AIMS: Atherogenesis involves a complex interaction between immune cells and lipids, processes greatly influenced by the vascular smooth muscle cell (VSMC) phenotype. The DNA glycosylase NEIL3 has previously been shown to have a role in atherogenesis, though whether this is due to its ability to repair DNA damage or to other non-canonical functions is not yet clear. Hereby, we investigate the role of NEIL3 in atherogenesis, specifically in VSMC phenotypic modulation, which is critical in plaque formation and stability. METHODS: Chow diet-fed atherosclerosis-prone Apoe-/- mice deficient in Neil3, and NEIL3-abrogated human primary aortic VSMCs were characterized by qPCR, and immunohistochemical and enzymatic-based assays; moreover, single-cell RNA sequencing, mRNA sequencing, and proteomics were used to map the molecular effects of Neil3/NEIL3 deficiency in the aortic VSMC phenotype. Furthermore, BrdU-based proliferation assays and Western blot were performed to elucidate the involvement of the Akt signaling pathway in the transdifferentiation of aortic VSMCs lacking Neil3/NEIL3. RESULTS: We show that Neil3 deficiency increases atherosclerotic plaque development without affecting systemic lipids. This observation was associated with a shift in VSMC phenotype towards a proliferating, lipid-accumulating and secretory macrophage-like cell phenotype, without changes in DNA damage. VSMC transdifferentiation in Neil3-deficient mice encompassed increased activity of the Akt signaling pathway, supported by cell experiments showing Akt-dependent proliferation in NEIL3-abrogated human primary aortic VSMCs. CONCLUSIONS: Our findings show that Neil3 deficiency promotes atherosclerosis development through non-canonical mechanisms affecting VSMC phenotype involving activation of the Akt signaling pathway.


Asunto(s)
Aterosclerosis , ADN Glicosilasas , Miocitos del Músculo Liso/enzimología , Placa Aterosclerótica , Animales , Aterosclerosis/genética , Proliferación Celular , Células Cultivadas , ADN Glicosilasas/genética , Endodesoxirribonucleasas , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Músculo Liso Vascular/citología , N-Glicosil Hidrolasas , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA