Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell Death Discov ; 10(1): 346, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090104

RESUMEN

Apoptosis plays a role in cell homeostasis in both normal development and disease. Bcl-xL, a member of the Bcl-2 family of proteins, regulates the intrinsic mitochondrial pathway of apoptosis. It is overexpressed in several cancers. Bcl-xL has a dual subcellular localisation and is found at the mitochondria as well as the endoplasmic reticulum (ER). However, the biological significance of its ER localisation is unclear. In order to decipher the functional contributions of the mitochondrial and reticular pools of Bcl-xL, we generated genetically modified mice expressing exclusively Bcl-xL at the ER, referred to as ER-xL, or the mitochondria, referred to as Mt-xL. By performing cell death assays, we demonstrated that ER-xL MEFs show increased vulnerability to apoptotic stimuli but are more resistant to ER stress. Furthermore, ER-xL MEFs displayed reduced 1,4,5-inositol trisphosphate receptor (IP3R)-mediated ER calcium release downstream of Phospholipase C activation. Collectively, our data indicate that upon ER stress, Bcl-xL negatively regulates IP3R-mediated calcium flux from the ER, which prevents ER calcium depletion and maintains the UPR and subsequent cell death in check. This work reveals a moonlighting function of Bcl-xL at the level of the ER, in addition to its well-known role in regulating apoptosis through the mitochondria.

2.
iScience ; 26(5): 106674, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37182099

RESUMEN

Non-lethal caspase activation (NLCA) has been linked to neurodevelopmental processes. However, how neurons control NLCA remains elusive. Here, we focused on Bcl-xL, a Bcl-2 homolog regulating caspase activation through the mitochondria. We generated a mouse model, referred to as ER-xL, in which Bcl-xL is absent in the mitochondria, yet present in the endoplasmic reticulum. Unlike bclx knockout mice that died at E13.5, ER-xL mice survived embryonic development but died post-partum because of altered feeding behavior. Enhanced caspase-3 activity was observed in the brain and the spinal cord white matter, but not the gray matter. No increase in cell death was observed in ER-xL cortical neurons, suggesting that the observed caspase-3 activation was apoptosis-independent. ER-xL neurons displayed increased caspase-3 activity in the neurites, resulting in impaired axon arborescence and synaptogenesis. Together, our findings suggest that mitochondrial Bcl-xL finely tunes caspase-3 through Drp-1-dependent mitochondrial fission, which is critical to neural network design.

3.
Sci Adv ; 6(40)2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32998881

RESUMEN

In metazoans, Bcl-2 family proteins are major regulators of mitochondrially mediated apoptosis; however, their evolution remains poorly understood. Here, we describe the molecular characterization of the four members of the Bcl-2 family in the most primitive metazoan, Trichoplax adhaerens All four trBcl-2 homologs are multimotif Bcl-2 group, with trBcl-2L1 and trBcl-2L2 being highly divergent antiapoptotic Bcl-2 members, whereas trBcl-2L3 and trBcl-2L4 are homologs of proapoptotic Bax and Bak, respectively. trBax expression permeabilizes the mitochondrial outer membrane, while trBak operates as a BH3-only sensitizer repressing antiapoptotic activities of trBcl-2L1 and trBcl-2L2. The crystal structure of a trBcl-2L2:trBak BH3 complex reveals that trBcl-2L2 uses the canonical Bcl-2 ligand binding groove to sequester trBak BH3, indicating that the structural basis for apoptosis control is conserved from T. adhaerens to mammals. Finally, we demonstrate that both trBax and trBak BH3 peptides bind selectively to human Bcl-2 homologs to sensitize cancer cells to chemotherapy treatment.


Asunto(s)
Apoptosis , Proteína Destructora del Antagonista Homólogo bcl-2 , Animales , Humanos , Mamíferos/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteína Destructora del Antagonista Homólogo bcl-2/química , Proteína Destructora del Antagonista Homólogo bcl-2/genética , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo
4.
Front Cell Dev Biol ; 6: 13, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29497611

RESUMEN

Bcl-2 family proteins are recognized as major regulators of the mitochondrial pathway of apoptosis. They control the mitochondrial outer membrane permeabilization (MOMP) by directly localizing to this organelle. Further investigations demonstrated that Bcl-2 related proteins are also found in other intracellular compartments such as the endoplasmic reticulum, the Golgi apparatus, the nucleus and the peroxisomes. At the level of these organelles, Bcl-2 family proteins not only regulate MOMP in a remote fashion but also participate in major cellular processes including calcium homeostasis, cell cycle control and cell migration. With the advances of live cell imaging techniques and the generation of fluorescent recombinant proteins, it became clear that the distribution of Bcl-2 proteins inside the cell is a dynamic process which is profoundly affected by changes in the cellular microenvironment. Here, we describe the current knowledge related to the subcellular distribution of the Bcl-2 family of proteins and further emphasize on the emerging concept that this highly dynamic process is critical for cell fate determination.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA