Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Nature ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39020168

RESUMEN

Reducing carbon dioxide (CO2) emissions urgently requires the large-scale deployment of carbon-capture technologies. These technologies must separate CO2 from various sources and deliver it to different sinks1,2. The quest for optimal solutions for specific source-sink pairs is a complex, multi-objective challenge involving multiple stakeholders and depends on social, economic and regional contexts. Currently, research follows a sequential approach: chemists focus on materials design3 and engineers on optimizing processes4,5, which are then operated at a scale that impacts the economy and the environment. Assessing these impacts, such as the greenhouse gas emissions over the plant's lifetime, is typically one of the final steps6. Here we introduce the PrISMa (Process-Informed design of tailor-made Sorbent Materials) platform, which integrates materials, process design, techno-economics and life-cycle assessment. We compare more than 60 case studies capturing CO2 from various sources in 5 global regions using different technologies. The platform simultaneously informs various stakeholders about the cost-effectiveness of technologies, process configurations and locations, reveals the molecular characteristics of the top-performing sorbents, and provides insights on environmental impacts, co-benefits and trade-offs. By uniting stakeholders at an early research stage, PrISMa accelerates carbon-capture technology development during this critical period as we aim for a net-zero world.

2.
Chem Rev ; 120(16): 8066-8129, 2020 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-32520531

RESUMEN

By combining metal nodes with organic linkers we can potentially synthesize millions of possible metal-organic frameworks (MOFs). The fact that we have so many materials opens many exciting avenues but also create new challenges. We simply have too many materials to be processed using conventional, brute force, methods. In this review, we show that having so many materials allows us to use big-data methods as a powerful technique to study these materials and to discover complex correlations. The first part of the review gives an introduction to the principles of big-data science. We show how to select appropriate training sets, survey approaches that are used to represent these materials in feature space, and review different learning architectures, as well as evaluation and interpretation strategies. In the second part, we review how the different approaches of machine learning have been applied to porous materials. In particular, we discuss applications in the field of gas storage and separation, the stability of these materials, their electronic properties, and their synthesis. Given the increasing interest of the scientific community in machine learning, we expect this list to rapidly expand in the coming years.


Asunto(s)
Ciencia de los Datos , Aprendizaje Automático , Estructuras Metalorgánicas/química , Ensayo de Materiales , Tamaño de la Partícula , Porosidad , Propiedades de Superficie
3.
J Am Chem Soc ; 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33170678

RESUMEN

Developing algorithmic approaches for the rational design and discovery of materials can enable us to systematically find novel materials, which can have huge technological and social impact. However, such rational design requires a holistic perspective over the full multistage design process, which involves exploring immense materials spaces, their properties, and process design and engineering as well as a techno-economic assessment. The complexity of exploring all of these options using conventional scientific approaches seems intractable. Instead, novel tools from the field of machine learning can potentially solve some of our challenges on the way to rational materials design. Here we review some of the chief advancements of these methods and their applications in rational materials design, followed by a discussion on some of the main challenges and opportunities we currently face together with our perspective on the future of rational materials design and discovery.

4.
Digit Discov ; 3(7): 1410-1420, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38993728

RESUMEN

This work presents a recommendation system for metal-organic frameworks (MOFs) inspired by online content platforms. By leveraging the unsupervised Doc2Vec model trained on document-structured intrinsic MOF characteristics, the model embeds MOFs into a high-dimensional chemical space and suggests a pool of promising materials for specific applications based on user-endorsed MOFs with similarity analysis. This proposed approach significantly reduces the need for exhaustive labeling of every material in the database, focusing instead on a select fraction for in-depth investigation. Ranging from methane storage and carbon capture to quantum properties, this study illustrates the system's adaptability to various applications.

5.
ACS Cent Sci ; 9(4): 563-581, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37122448

RESUMEN

The vastness of the materials design space makes it impractical to explore using traditional brute-force methods, particularly in reticular chemistry. However, machine learning has shown promise in expediting and guiding materials design. Despite numerous successful applications of machine learning to reticular materials, progress in the field has stagnated, possibly because digital chemistry is more an art than a science and its limited accessibility to inexperienced researchers. To address this issue, we present mofdscribe, a software ecosystem tailored to novice and seasoned digital chemists that streamlines the ideation, modeling, and publication process. Though optimized for reticular chemistry, our tools are versatile and can be used in nonreticular materials research. We believe that mofdscribe will enable a more reliable, efficient, and comparable field of digital chemistry.

6.
Sci Adv ; 9(1): eadc9576, 2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36598993

RESUMEN

One of the main environmental impacts of amine-based carbon capture processes is the emission of the solvent into the atmosphere. To understand how these emissions are affected by the intermittent operation of a power plant, we performed stress tests on a plant operating with a mixture of two amines, 2-amino-2-methyl-1-propanol and piperazine (CESAR1). To forecast the emissions and model the impact of interventions, we developed a machine learning model. Our model showed that some interventions have opposite effects on the emissions of the components of the solvent. Thus, mitigation strategies required for capture plants operating on a single component solvent (e.g., monoethanolamine) need to be reconsidered if operated using a mixture of amines. Amine emissions from a solvent-based carbon capture plant are an example of a process that is too complex to be described by conventional process models. We, therefore, expect that our approach can be more generally applied.

7.
Digit Discov ; 2(5): 1233-1250, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-38013906

RESUMEN

Large-language models (LLMs) such as GPT-4 caught the interest of many scientists. Recent studies suggested that these models could be useful in chemistry and materials science. To explore these possibilities, we organized a hackathon. This article chronicles the projects built as part of this hackathon. Participants employed LLMs for various applications, including predicting properties of molecules and materials, designing novel interfaces for tools, extracting knowledge from unstructured data, and developing new educational applications. The diverse topics and the fact that working prototypes could be generated in less than two days highlight that LLMs will profoundly impact the future of our fields. The rich collection of ideas and projects also indicates that the applications of LLMs are not limited to materials science and chemistry but offer potential benefits to a wide range of scientific disciplines.

8.
Nat Chem ; 14(4): 365-376, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35379967

RESUMEN

Large amounts of data are generated in chemistry labs-nearly all instruments record data in a digital form, yet a considerable proportion is also captured non-digitally and reported in ways non-accessible to both humans and their computational agents. Chemical research is still largely centred around paper-based lab notebooks, and the publication of data is often more an afterthought than an integral part of the process. Here we argue that a modular open-science platform for chemistry would be beneficial not only for data-mining studies but also, well beyond that, for the entire chemistry community. Much progress has been made over the past few years in developing technologies such as electronic lab notebooks that aim to address data-management concerns. This will help make chemical data reusable, however it is only one step. We highlight the importance of centring open-science initiatives around open, machine-actionable data and emphasize that most of the required technologies already exist-we only need to connect, polish and embrace them.

9.
Commun Chem ; 5(1): 170, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36697847

RESUMEN

The synthesis of metal-organic frameworks (MOFs) is often complex and the desired structure is not always obtained. In this work, we report a methodology that uses a joint machine learning and experimental approach to optimize the synthesis conditions of Al-PMOF (Al2(OH)2TCPP) [H2TCPP = meso-tetra(4-carboxyphenyl)porphine], a promising material for carbon capture applications. Al-PMOF was previously synthesized using a hydrothermal reaction, which gave a low throughput yield due to its relatively long reaction time (16 hours). Here, we use a genetic algorithm to carry out a systematic search for the optimal synthesis conditions and a microwave-based high-throughput robotic platform for the syntheses. We show that, in just two generations, we could obtain excellent crystallinity and yield close to 80% in a much shorter reaction time (50 minutes). Moreover, by analyzing the failed and partially successful experiments, we could identify the most important experimental variables that determine the crystallinity and yield.

10.
Chem Mater ; 34(9): 3893-3901, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35573112

RESUMEN

Mg-Al mixed metal oxides (MMOs), derived from the decomposition of layered double hydroxides (LDHs), have been purposed as adsorbents for CO2 capture of industrial plant emissions. To aid in the design and optimization of these materials for CO2 capture at 200 °C, we have used a combination of solid-state nuclear magnetic resonance (ssNMR) and density functional theory (DFT) to characterize the CO2 gas sorption products and determine the various sorption sites in Mg-Al MMOs. A comparison of the DFT cluster calculations with the observed 13C chemical shifts of the chemisorbed products indicates that mono- and bidentate carbonates are formed at the Mg-O sites with adjacent Al substitution of an Mg atom, while the bicarbonates are formed at Mg-OH sites without adjacent Al substitution. Quantitative 13C NMR shows an increase in the relative amount of strongly basic sites, where the monodentate carbonate product is formed, with increasing Al/Mg molar ratios in the MMOs. This detailed understanding of the various basic Mg-O sites presented in MMOs and the formation of the carbonate, bidentate carbonate, and bicarbonate chemisorbed species yields new insights into the mechanism of CO2 adsorption at 200 °C, which can further aid in the design and capture capacity optimization of the materials.

11.
Patterns (N Y) ; 3(10): 100588, 2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36277819

RESUMEN

Artificial intelligence (AI) and machine learning (ML) are expanding in popularity for broad applications to challenging tasks in chemistry and materials science. Examples include the prediction of properties, the discovery of new reaction pathways, or the design of new molecules. The machine needs to read and write fluently in a chemical language for each of these tasks. Strings are a common tool to represent molecular graphs, and the most popular molecular string representation, Smiles, has powered cheminformatics since the late 1980s. However, in the context of AI and ML in chemistry, Smiles has several shortcomings-most pertinently, most combinations of symbols lead to invalid results with no valid chemical interpretation. To overcome this issue, a new language for molecules was introduced in 2020 that guarantees 100% robustness: SELF-referencing embedded string (Selfies). Selfies has since simplified and enabled numerous new applications in chemistry. In this perspective, we look to the future and discuss molecular string representations, along with their respective opportunities and challenges. We propose 16 concrete future projects for robust molecular representations. These involve the extension toward new chemical domains, exciting questions at the interface of AI and robust languages, and interpretability for both humans and machines. We hope that these proposals will inspire several follow-up works exploiting the full potential of molecular string representations for the future of AI in chemistry and materials science.

12.
Nat Chem ; 13(8): 771-777, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34226703

RESUMEN

Knowledge of the oxidation state of metal centres in compounds and materials helps in the understanding of their chemical bonding and properties. Chemists have developed theories to predict oxidation states based on electron-counting rules, but these can fail to describe oxidation states in extended crystalline systems such as metal-organic frameworks. Here we propose the use of a machine-learning model, trained on assignments by chemists encoded in the chemical names in the Cambridge Structural Database, to automatically assign oxidation states to the metal ions in metal-organic frameworks. In our approach, only the immediate local environment around a metal centre is considered. We show that the strategy is robust to experimental uncertainties such as incorrect protonation, unbound solvents or changes in bond length. This method gives good accuracy and we show that it can be used to detect incorrect assignments in the Cambridge Structural Database, illustrating how collective knowledge can be captured by machine learning and converted into a useful tool.

13.
ACS Appl Mater Interfaces ; 13(51): 61004-61014, 2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-34910455

RESUMEN

By combining metal nodes and organic linkers, an infinite number of metal organic frameworks (MOFs) can be designed in silico. Therefore, when making new databases of such hypothetical MOFs, we need to ensure that they not only contribute toward the growth of the count of structures but also add different chemistries to the existing databases. In this study, we designed a database of ∼20,000 hypothetical MOFs, which are diverse in terms of their chemical design space─metal nodes, organic linkers, functional groups, and pore geometries. Using machine learning techniques, we visualized and quantified the diversity of these structures. We find that on adding the structures of our database, the overall diversity metrics of hypothetical databases improve, especially in terms of the chemistry of metal nodes. We then assessed the usefulness of diverse structures by evaluating their performance, using grand-canonical Monte Carlo simulations, in two important environmental applications─post-combustion carbon capture and hydrogen storage. We find that many of these structures perform better than widely used benchmark materials such as Zeolite-13X (for post-combustion carbon capture) and MOF-5 (for hydrogen storage). All the structures developed in this study, and their properties, are provided on the Materials Cloud to encourage further use of these materials for other applications.

14.
Nat Commun ; 12(1): 2312, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33875649

RESUMEN

The design rules for materials are clear for applications with a single objective. For most applications, however, there are often multiple, sometimes competing objectives where there is no single best material and the design rules change to finding the set of Pareto optimal materials. In this work, we leverage an active learning algorithm that directly uses the Pareto dominance relation to compute the set of Pareto optimal materials with desirable accuracy. We apply our algorithm to de novo polymer design with a prohibitively large search space. Using molecular simulations, we compute key descriptors for dispersant applications and drastically reduce the number of materials that need to be evaluated to reconstruct the Pareto front with a desired confidence. This work showcases how simulation and machine learning techniques can be coupled to discover materials within a design space that would be intractable using conventional screening approaches.

15.
Chem Sci ; 12(10): 3587-3598, 2020 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-34163632

RESUMEN

Colour is at the core of chemistry and has been fascinating humans since ancient times. It is also a key descriptor of optoelectronic properties of materials and is often used to assess the success of a synthesis. However, predicting the colour of a material based on its structure is challenging. In this work, we leverage subjective and categorical human assignments of colours to build a model that can predict the colour of compounds on a continuous scale. In the process of developing the model, we also uncover inadequacies in current reporting mechanisms. For example, we show that the majority of colour assignments are subject to perceptive spread that would not comply with common printing standards. To remedy this, we suggest and implement an alternative way of reporting colour-and chemical data in general. All data is captured in an objective, and standardised, form in an electronic lab notebook and subsequently automatically exported to a repository in open formats, from where it can be interactively explored by other researchers. We envision this to be key for a data-driven approach to chemical research.

16.
Nat Commun ; 11(1): 4068, 2020 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-32792486

RESUMEN

Millions of distinct metal-organic frameworks (MOFs) can be made by combining metal nodes and organic linkers. At present, over 90,000 MOFs have been synthesized and over 500,000 predicted. This raises the question whether a new experimental or predicted structure adds new information. For MOF chemists, the chemical design space is a combination of pore geometry, metal nodes, organic linkers, and functional groups, but at present we do not have a formalism to quantify optimal coverage of chemical design space. In this work, we develop a machine learning method to quantify similarities of MOFs to analyse their chemical diversity. This diversity analysis identifies biases in the databases, and we show that such bias can lead to incorrect conclusions. The developed formalism in this study provides a simple and practical guideline to see whether new structures will have the potential for new insights, or constitute a relatively small variation of existing structures.

17.
J Chem Theory Comput ; 15(10): 5635-5641, 2019 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-31442035

RESUMEN

Molecular simulations with periodic boundary conditions require the definition of a certain cutoff radius, rc, beyond which pairwise dispersion interactions are neglected. For the simulation of homogeneous phases the use of tail corrections is well-established, which can remedy this truncation of the potential. These corrections are built under the assumption that beyond rc the radial distribution function, g(r), is equal to one. In this work we shed some light on the discussion of whether tail corrections should be used in the modeling of heterogeneous systems. We show that for the adsorption of gases in a diverse set of nanoporous crystalline materials (zeolites, covalent organic frameworks, and metal-organic frameworks), tail corrections are a convenient choice to make the adsorption results less sensitive to the details of the truncation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA