Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Anal Chem ; 95(14): 6061-6070, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37002540

RESUMEN

Extracellular vesicles (EVs) play a key role in cell-cell communication and thus have great potential to be utilized as therapeutic agents and diagnostic tools. In this study, we implemented single-molecule microscopy techniques as a toolbox for a comprehensive characterization as well as measurement of the cellular uptake of HEK293T cell-derived EVs (eGFP-labeled) in HeLa cells. A combination of fluorescence and atomic force microscopy revealed a fraction of 68% fluorescently labeled EVs with an average size of ∼45 nm. Two-color single-molecule fluorescence microscopy analysis elucidated the 3D dynamics of EVs entering HeLa cells. 3D colocalization analysis of two-color direct stochastic optical reconstruction microscopy (dSTORM) images revealed that 25% of EVs that experienced uptake colocalized with transferrin, which has been linked to early recycling of endosomes and clathrin-mediated endocytosis. The localization analysis was combined with stepwise photobleaching, providing a comparison of protein aggregation outside and inside the cells.


Asunto(s)
Vesículas Extracelulares , Imagen Individual de Molécula , Humanos , Células HeLa , Células HEK293 , Vesículas Extracelulares/metabolismo , Microscopía de Fuerza Atómica
2.
Int J Mol Sci ; 24(1)2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36613841

RESUMEN

In baker's yeast (Saccharomyces cerevisiae), Trk1, a member of the superfamily of K-transporters (SKT), is the main K+ uptake system under conditions when its concentration in the environment is low. Structurally, Trk1 is made up of four domains, each similar and homologous to a K-channel α subunit. Because most K-channels are proteins containing four channel-building α subunits, Trk1 could be functional as a monomer. However, related SKT proteins TrkH and KtrB were crystallised as dimers, and for Trk1, a tetrameric arrangement has been proposed based on molecular modelling. Here, based on Bimolecular Fluorescence Complementation experiments and single-molecule fluorescence microscopy combined with molecular modelling; we provide evidence that Trk1 can exist in the yeast plasma membrane as a monomer as well as a dimer. The association of monomers to dimers is regulated by the K+ concentration.


Asunto(s)
Proteínas de Transporte de Catión , Proteínas de Saccharomyces cerevisiae , Transporte Biológico , Proteínas Portadoras/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Membrana Celular/metabolismo , Proteínas Fúngicas/metabolismo , Potasio/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Translocación Genética
3.
PLoS Comput Biol ; 16(6): e1007902, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32603371

RESUMEN

We present the software platform 2CALM that allows for a comparative analysis of 3D localisation microscopy data representing protein distributions in two biological samples. The in-depth statistical analysis reveals differences between samples at the nanoscopic level using parameters such as cluster-density and -curvature. An automatic classification system combines multiplex and multi-level statistical approaches into one comprehensive parameter for similarity testing of the compared samples. We demonstrated the biological importance of 2CALM, comparing the protein distributions of CD41 and CD62p on activated platelets in a 3D artificial clot. Additionally, using 2CALM, we quantified the impact of the inflammatory cytokine interleukin-1ß on platelet activation in clots. The platform is applicable to any other cell type and biological system and can provide new insights into biological and medical applications.


Asunto(s)
Plaquetas/metabolismo , Proteínas de la Membrana/metabolismo , Microscopía/métodos , Modelos Biológicos , Trombosis/metabolismo , Humanos , Aprendizaje Automático , Selectina-P/metabolismo , Prueba de Estudio Conceptual
4.
J Nanobiotechnology ; 19(1): 23, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33461577

RESUMEN

Three-dimensional photopolymerization techniques such as multiphoton polymerization lithography (MPL) and stimulated emission depletion (STED) lithography are powerful tools for fabricating structures in the sub-µm range. Combining these techniques with microfluidics enables us to broaden the range of their applications. In this study, we show a microfluidic device enhanced with MPL structures carrying STED-lithographically written nanoanchors that promote binding of the von Willebrand factor (vWF). The density of vWF is adjusted by varying the number of the nanoanchors on the 3D structures. This allows us to study the impact of the density of vWF on the activation of thrombocytes. The activation of the thrombocytes seems to decrease with the density of vWF on the 3D scaffolds inside the microfluidic channels.


Asunto(s)
Plaquetas , Microfluídica/métodos , Humanos , Inmunoglobulina G , Dispositivos Laboratorio en un Chip , Polimerizacion , Unión Proteica , Factor de von Willebrand/metabolismo
5.
Int J Mol Sci ; 23(1)2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-35008709

RESUMEN

Over-expression of fluorescently-labeled markers for extracellular vesicles is frequently used to visualize vesicle up-take and transport. EVs that are labeled by over-expression show considerable heterogeneity regarding the number of fluorophores on single particles, which could potentially bias tracking and up-take studies in favor of more strongly-labeled particles. To avoid the potential artefacts that are caused by over-expression, we developed a genome editing approach for the fluorescent labeling of the extracellular vesicle marker CD63 with green fluorescent protein using the CRISPR/Cas9 technology. Using single-molecule sensitive fluorescence microscopy, we quantitatively compared the degree of labeling of secreted small extracellular vesicles from conventional over-expression and the CRISPR/Cas9 approach with true single-particle measurements. With our analysis, we can demonstrate a larger fraction of single-GFP-labeled EVs in the EVs that were isolated from CRISPR/Cas9-modified cells (83%) compared to EVs that were isolated from GFP-CD63 over-expressing cells (36%). Despite only single-GFP-labeling, CRISPR-EVs can be detected and discriminated from auto-fluorescence after their up-take into cells. To demonstrate the flexibility of the CRISPR/Cas9 genome editing method, we fluorescently labeled EVs using the HaloTag® with lipid membrane permeable dye, JaneliaFluor® 646, which allowed us to perform 3D-localization microscopy of single EVs taken up by the cultured cells.


Asunto(s)
Sistemas CRISPR-Cas/genética , Vesículas Extracelulares/metabolismo , Edición Génica , Coloración y Etiquetado , Vesículas Extracelulares/ultraestructura , Fluorescencia , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Células HeLa , Humanos
6.
Chemistry ; 25(42): 9851-9855, 2019 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-31199024

RESUMEN

A simple supramolecular crosslinked gel is reported with a photosensitive ruthenium bipyridine complex functioning as a crosslinker and poly(4-vinylpyridine) (P4VP) as a macromolecular ligand. Irradiation of the organogels in H2 O/MeOH with visible and NIR light (in a multiphoton process) leads to cleavage of pyridine moieties from the ruthenium complex breaking the cross-links and causing degelation and hence solubilization of the P4VP chains. Real-time (RT) photorheology experiments of thin films showed a rapid degelation in several seconds, whereas larger bulk samples could also be photocleaved. Furthermore, the gels could be reformed or healed by simple heating of the system and restoration of the metal-ligand crosslinks. The relatively simple dynamic system with a high sensitivity towards light in the visible and NIR region make them interesting positive photoresists for nano/micropatterning applications, as was demonstrated by writing, erasing, and rewriting of the gels by single- and multiphoton lithography.

7.
Biomed Microdevices ; 22(1): 8, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31845066

RESUMEN

Biomimetics is the interdisciplinary scientific field focused on the study and imitation of biological systems, with the aim of solving complex technological problems. In this paper, we present a new bio-inspired design for microneedles (MNs) and MN arrays, intended for rapidly coating the MNs with drug/vaccine. The biomimetic approach consists in ornamenting the lateral sides of pyramidal MNs with structures inspired by the external scent efferent systems of some European true bugs, which facilitate a directional liquid transport. To realize these MNs, two-photon polymerization (TPP) technique was used. Liquid coating capabilities of structured and non-structured MNs were compared. Moreover, both in-vivo and ex-vivo skin tests were performed to prove that MNs pierce the skin. We show that the arrays of MNs can be accurately replicated using a micro-moulding technique. We believe this design will be beneficial for the process of drug/vaccine loading onto the needles' surfaces, by making it more efficient and by reducing the drug/vaccine wastage during MN coating process.


Asunto(s)
Biomimética/instrumentación , Diseño de Equipo , Agujas , Preparaciones Farmacéuticas/química , Vacunas/química
8.
Anal Chem ; 90(21): 12372-12376, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30350628

RESUMEN

Mobility of proteins and lipids plays a major role in physiological processes. Platforms which were developed to study protein interaction between immobilized and mobile proteins suffer from shortcomings such as fluorescence quenching or complicated fabrication methods. Here we report a versatile platform comprising immobilized histidine-tagged proteins and biotinylated proteins in a mobile phase. Importantly, multiphoton photolithography was used for easy and fast fabrication of the platform and allows, in principle, extension of its application to three dimensions. The platform, which is made up of functionalized polymer structures embedded in a mobile lipid bilayer, shows low background fluorescence and allows for mobility of arbitrary proteins.


Asunto(s)
Acrilatos/química , Membrana Dobles de Lípidos/química , Polímeros/química , Proteínas/química , Difusión , Fluorescencia , Procesos Fotoquímicos
9.
Int J Mol Sci ; 19(4)2018 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-29641438

RESUMEN

Here, we measure the actin cytoskeleton arrangement of different morphological states of human platelets using a new protocol for photo-switching of rhodamine class fluorophores. A new medium composition was established for imaging the cytoskeleton using Alexa Fluor 488 conjugated to phalloidin. Morphological states of platelets bound to a glass substrate are visualized and quantified by two-dimensional localization microscopy at nanoscopic resolution. Marker-less drift correction yields localization of individual Alexa 488 conjugated to phalloidin with a positional accuracy of 12 nm.


Asunto(s)
Actinas/metabolismo , Plaquetas/ultraestructura , Actinas/ultraestructura , Plaquetas/metabolismo , Células Cultivadas , Colorantes Fluorescentes/química , Humanos , Microscopía Fluorescente/métodos , Sensibilidad y Especificidad
10.
Plant Cell ; 26(2): 754-64, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24532591

RESUMEN

Alternative splicing (AS) is an important regulatory process that leads to the creation of multiple RNA transcripts from a single gene. Alternative transcripts often carry premature termination codons (PTCs), which trigger nonsense-mediated decay (NMD), a cytoplasmic RNA degradation pathway. However, intron retention, the most prevalent AS event in plants, often leads to PTC-carrying splice variants that are insensitive to NMD; this led us to question the fate of these special RNA variants. Here, we present an innovative approach to monitor and characterize endogenous mRNA splice variants within living plant cells. This method combines standard confocal laser scanning microscopy for molecular beacon detection with a robust statistical pipeline for sample comparison. We demonstrate this technique on the localization of NMD-insensitive splice variants of two Arabidopsis thaliana genes, RS2Z33 and the SEF factor. The experiments reveal that these intron-containing splice variants remain within the nucleus, which allows them to escape the NMD machinery. Moreover, fluorescence recovery after photobleaching experiments in the nucleoplasm show a decreased mobility of intron-retained mRNAs compared with fully spliced RNAs. In addition, differences in mobility were observed for an mRNA dependent on its origin from an intron-free or an intron-containing gene.


Asunto(s)
Empalme Alternativo/genética , Arabidopsis/genética , Núcleo Celular/metabolismo , Imagen Molecular/métodos , Degradación de ARNm Mediada por Codón sin Sentido/genética , Células Vegetales/metabolismo , Arabidopsis/citología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Supervivencia Celular , Electroporación , Recuperación de Fluorescencia tras Fotoblanqueo , Protoplastos/citología , Protoplastos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transfección
11.
Nucleic Acids Res ; 42(3): e21, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24366880

RESUMEN

Telomeres comprise the protective caps of natural chromosome ends and function in the suppression of DNA damage signaling and cellular senescence. Therefore, techniques used to determine telomere length are important in a number of studies, ranging from those investigating telomeric structure to effects on human disease. Terminal restriction fragment (TRF) analysis has for a long time shown to be one of the most accurate methods for quantification of absolute telomere length and range from a number of species. As this technique centers on standard Southern blotting, telomeric DNA is observed on resulting autoradiograms as a heterogeneous smear. Methods to accurately determine telomere length from telomeric smears have proven problematic, and no reliable technique has been suggested to obtain mean telomere length values. Here, we present TeloTool, a new program allowing thorough statistical analysis of TRF data. Using this new method, a number of methodical biases are removed from previously stated techniques, including assumptions based on probe intensity corrections. This program provides a standardized mean for quick and reliable extraction of quantitative data from TRF autoradiograms; its wide application will allow accurate comparison between datasets generated in different laboratories.


Asunto(s)
Programas Informáticos , Homeostasis del Telómero , Telómero/química , Southern Blotting , Enzimas de Restricción del ADN , Sondas de Ácido Nucleico
12.
J Nanobiotechnology ; 13: 27, 2015 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-25888763

RESUMEN

BACKGROUND: Two-photon polymerization, optionally combined with stimulated emission depletion (STED) lithography, allows two and three dimensional polymer fabrication with structure sizes and resolution below the diffraction limit. Structuring of polymers with photons, whose wavelength is within the visible range of the electromagnetic spectrum, gives new opportunities to a large field of applications e.g. in the field of biotechnology and tissue engineering. In order to create new biotechnological applications, versatile methods are needed to functionalize the polymeric structures. RESULTS: Here we report the creation of polymer-nanodots with high streptavidin (SA) affinity via two-photon polymerization (TPP). Controlling the size of the polymer dots allows for limiting the number of the SA molecules. TPP dots with a diameter of a few 100 nm show up to 100% streptavidin loading. We can show that most of the dots are loaded by one to two streptavidins on average. Attached streptavidin molecules remain functional and are capable to bind 0.7 biotin molecules on average. CONCLUSION: The presented functionalized nanostructures may be used as platforms for a multitude of biological experimental setups. Nanoscopic well defined structures, capable of selective binding of streptavin proteins, used as linkers for other biotinylated biomolecules, may also find application in in-vitro sensing, like for example lab on chip devices with limited surface area.


Asunto(s)
Nanoestructuras/química , Nanotecnología/métodos , Estreptavidina/química , Biotina/metabolismo , Colorantes Fluorescentes/química , Compuestos Heterocíclicos de 4 o más Anillos/química , Luz , Membrana Dobles de Lípidos , Microscopía Electrónica de Rastreo , Microscopía Fluorescente , Polimerizacion , Rodaminas/química , Estreptavidina/metabolismo , Ácidos Sulfónicos/química
13.
Microsc Microanal ; 21(4): 826-36, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26173412

RESUMEN

We here present two new methods for the characterization of fluorescent localization microscopy images obtained from immunostained brain tissue sections. Direct stochastic optical reconstruction microscopy images of 5-HT1A serotonin receptors and glial fibrillary acidic proteins in healthy cryopreserved brain tissues are analyzed. In detail, we here present two image processing methods for characterizing differences in receptor distribution on glial cells and their distribution on neural cells: One variant relies on skeleton extraction and adaptive thresholding, the other on k-means based discrete layer segmentation. Experimental results show that both methods can be applied for distinguishing classes of images with respect to serotonin receptor distribution. Quantification of nanoscopic changes in relative protein expression on particular cell types can be used to analyze degeneration in tissues caused by diseases or medical treatment.


Asunto(s)
Encéfalo/citología , Citometría de Imagen/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Fluorescente/métodos , Neuroglía/química , Receptores de Serotonina/análisis , Humanos
14.
Nano Lett ; 13(11): 5672-8, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24111646

RESUMEN

Acrylate nanoanchors of subdiffraction-limited diameter are written with optical stimulated emission depletion (STED) lithography. After incubation, 98% of all nanoanchors are loaded quickly with fluorescently labeled antibodies. Controlling the size of the nanoanchors allows for limiting the number of the antibodies. Direct stochastic optical reconstruction microscopy (dSTORM) imaging, statistical distribution of fluorescence, quantitative fluorescence readout, and single molecule blinking consistently prove that 80% of the nanoanchors with a 65 nm diameter are carrying only one antibody each, which are functional as confirmed with live erythrocytes.


Asunto(s)
Acrilatos/química , Anticuerpos/química , Nanoestructuras , Nanotecnología , Anticuerpos/inmunología , Eritrocitos/inmunología , Colorantes Fluorescentes/química , Humanos , Procesamiento de Imagen Asistido por Computador , Microscopía Fluorescente
15.
Front Bioeng Biotechnol ; 12: 1372807, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638321

RESUMEN

A biotechnological platform consisting of two-color 3D super-resolution readout and a microfluidic system was developed to investigate platelet interaction with a layer of perfused endothelial cells under flow conditions. Platelet activation has been confirmed via CD62P clustering on the membrane and mitochondrial morphology of ECs at the single cell level were examined using 3D two-color single-molecule localization microscopy and classified applying machine learning. To compare binding of activated platelets to intact or stressed ECs, a femtosecond laser was used to induced damage to single ECs within the perfused endothelial layer. We observed that activated platelets bound to the perfused ECs layer preferentially in the proximity to single stressed ECs. Platelets activated under flow were ∼6 times larger compared to activated ones under static conditions. The CD62P expression indicated more CD62P proteins on membrane of dynamically activated platelets, with a tendency to higher densities at the platelet/EC interface. Platelets activated under static conditions showed a less pronounced CD62P top/bottom asymmetry. The clustering of CD62P in the platelet membrane differs depending on the activation conditions. Our results confirm that nanoscopic analysis using two-color 3D super-resolution technology can be used to assess platelet interaction with a stressed endothelium under dynamic conditions.

16.
Mater Today Bio ; 25: 100994, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38384793

RESUMEN

Recently, 2D/3D direct laser writing has attracted increased attention due to its broad applications ranging from biomedical engineering to aerospace. 3D nanolithography of water-soluble protein-based scaffolds have been envisioned to provide a variety of tunable properties. In this paper, we present a functional protein-based photoresist with tunable mechanical properties that is suitable for multiphoton lithography (MPL). Through the use of methacrylated streptavidin or methacrylated bovine serum albumin in combination with polyethylene glycol diacrylate or methacrylated hyaluronic acid as crosslinkers and a vitamin-based photoinitiator, we were able to write two- and three-dimensional structures as small as 200 nm/600 nm lateral/axial features, respectively. We also demonstrated that Young's modulus can be tuned by the photoresist composition, and we were able to achieve values as low as 40 kPa. Furthermore, we showed that Young's modulus can be recovered after drying and rehydration (i.e. shelf time determination). The retained biological functionality of the streptavidin scaffolds was demonstrated using fluorescently labelled biotins. Using single-molecule fluorescence microscopy, we estimated the density of streptavidin in the written features (1.8 ± 0.2 × 105 streptavidins per 1.00 ± 0.05 µm³ of feature volume). Finally, we showed applicability of our 2D scaffold as a support for a fluorescence absorbance immuno-assay (FLISA), and as a delivery platform of extracellular vesicles to HeLa cells.

17.
Opt Express ; 21(9): 10831-40, 2013 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-23669940

RESUMEN

Two-photon direct laser writing (DLW) lithography is limited in the achievable structure size as well as in structure resolution. Adding stimulated emission depletion (STED) to DLW allowed overcoming both restrictions. We now push both to new limits. Using visible light for two-photon DLW (780 nm) and STED (532 nm), we obtain lateral structure sizes of 55 nm, a Sparrow limit of around 100 nm and we present two clearly separated lines spaced only 120 nm apart. The photo-resist used in these experiments is a mixture of tri- and tetra-acrylates and 7-Diethylamino-3-thenoylcoumarin as a photo-starter which can be readily quenched via STED.


Asunto(s)
Rayos Láser , Impresión Molecular/métodos , Fotograbar/métodos , Refractometría/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo
18.
ACS Appl Opt Mater ; 1(5): 945-951, 2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37255503

RESUMEN

Stimulated emission depletion (STED) has been used to break the diffraction limit in fluorescence microscopy. Inspired by this success, similar methods were used to reduce the structure size in three-dimensional, subdiffractional optical lithography. So far, only a very limited number of radical polymerization starters proved to be suitable for STED-inspired lithography. In this contribution, we introduce the starter Michler's ethyl ketone (MEK), which has not been used so far for STED-inspired lithography. In contrast to the commonly used 7-diethylamino-3-thenoylcoumarin (DETC), nanostructures written with MEK show low autofluorescence in the visible range. Therefore, MEK is promising for being used as a starter for protein or cell scaffolds in physiological research because the autofluorescence of DETC so far excluded the use of the green emission channel in multicolor fluorescence or confocal microscopy. In turn, because of the weak transitions of MEK in the visible spectrum, STED, in its original sense, cannot be applied to deplete MEK in the outer rim of the point spread function. However, a 660 nm laser can be used for depletion because this wavelength is well within the absorption spectrum of transient states, possibly of triplet states. We show that polymerization can be fully stopped by applying transient state absorption at 660 nm and that structure sizes down to approx. 40 nm in the lateral and axial directions can be achieved, which means 1/20 of the optical wavelength used for writing.

19.
ACS Macro Lett ; 12(6): 673-678, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37158040

RESUMEN

Photochemical additive manufacturing technologies can produce complex geometries in short production times and thus have considerable potential as a tool to fabricate medical devices such as individualized patient-specific implants, prosthetics and tissue engineering scaffolds. However, most photopolymer resins degrade only slowly under the mild conditions required for many biomedical applications. Herein we report a novel platform consisting of amino acid-based polyphosphorodiamidate (APdA) monomers with hydrolytically cleavable bonds. The substituent on the α-amino acid can be used as a handle for facile control of hydrolysis rates of the monomers into their endogenous components, namely phosphate and the corresponding amino acid. Furthermore, monomer hydrolysis is considerably accelerated at lower pH values. The monomers underwent thiol-yne photopolymerization and could be 3D structured via multiphoton lithography. Copolymerization with commonly used hydrophobic thiols demonstrates not only their ability to regulate the ambient degradation rate of thiol-yne polyester photopolymer resins, but also desirable surface erosion behavior. Such degradation profiles, in the appropriate time frames, in suitably mild conditions, combined with their low cytotoxicity and 3D printability, render these novel photomonomers of significant interest for a wide range of biomaterial applications.


Asunto(s)
Aminoácidos , Andamios del Tejido , Humanos , Andamios del Tejido/química , Materiales Biocompatibles , Ingeniería de Tejidos , Poliésteres , Materiales Dentales , Compuestos de Sulfhidrilo/química
20.
Biomedicines ; 10(5)2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35625899

RESUMEN

Lipedema is a chronic, progressive disease of adipose tissue with unknown etiology. Based on the relevance of the stromal vascular fraction (SVF) cell population in lipedema, we performed a thorough characterization of subcutaneous adipose tissue, SVF isolated thereof and the sorted populations of endothelial cells (EC), pericytes and cultured adipose-derived stromal/stem cells (ASC) of early-stage lipedema patients. We employed histological and gene expression analysis and investigated the endothelial barrier by immunofluorescence and analysis of endothelial permeability in vitro. Although there were no significant differences in histological stainings, we found altered gene expression of factors relevant for local estrogen metabolism (aromatase), preadipocyte commitment (ZNF423) and immune cell infiltration (CD11c) in lipedema on the tissue level, as well as in distinct cellular subpopulations. Machine learning analysis of immunofluorescence images of CD31 and ZO-1 revealed a morphological difference in the cellular junctions of EC cultures derived from healthy and lipedema individuals. Furthermore, the secretome of lipedema-derived SVF cells was sufficient to significantly increase leakiness of healthy human primary EC, which was also reflected by decreased mRNA expression of VE-cadherin. Here, we showed for the first time that the secretome of SVF cells creates an environment that triggers endothelial barrier dysfunction in early-stage lipedema. Moreover, since alterations in gene expression were detected on the cellular and/or tissue level, the choice of sample material is of high importance in elucidating this complex disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA