Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Genome Res ; 21(8): 1223-38, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21734011

RESUMEN

Genetic reference populations in model organisms are critical resources for systems genetic analysis of disease related phenotypes. The breeding history of these inbred panels may influence detectable allelic and phenotypic diversity. The existing panel of common inbred strains reflects historical selection biases, and existing recombinant inbred panels have low allelic diversity. All such populations may be subject to consequences of inbreeding depression. The Collaborative Cross (CC) is a mouse reference population with high allelic diversity that is being constructed using a randomized breeding design that systematically outcrosses eight founder strains, followed by inbreeding to obtain new recombinant inbred strains. Five of the eight founders are common laboratory strains, and three are wild-derived. Since its inception, the partially inbred CC has been characterized for physiological, morphological, and behavioral traits. The construction of this population provided a unique opportunity to observe phenotypic variation as new allelic combinations arose through intercrossing and inbreeding to create new stable genetic combinations. Processes including inbreeding depression and its impact on allelic and phenotypic diversity were assessed. Phenotypic variation in the CC breeding population exceeds that of existing mouse genetic reference populations due to both high founder genetic diversity and novel epistatic combinations. However, some focal evidence of allele purging was detected including a suggestive QTL for litter size in a location of changing allele frequency. Despite these inescapable pressures, high diversity and precision for genetic mapping remain. These results demonstrate the potential of the CC population once completed and highlight implications for development of related populations.


Asunto(s)
Cruzamientos Genéticos , Endogamia , Sitios de Carácter Cuantitativo , Animales , Femenino , Variación Genética , Genotipo , Tamaño de la Camada/genética , Masculino , Ratones , Ratones Endogámicos , Fenotipo , Polimorfismo de Nucleótido Simple
2.
Mamm Genome ; 19(6): 382-9, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18716833

RESUMEN

Complex traits and disease comorbidity in humans and in model organisms are the result of naturally occurring polymorphisms that interact with each other and with the environment. To ensure the availability of resources needed to investigate biomolecular networks and systems-level phenotypes underlying complex traits, we have initiated breeding of a new genetic reference population of mice, the Collaborative Cross. This population has been designed to optimally support systems genetics analysis. Its novel and important features include a high level of genetic diversity, a large population size to ensure sufficient power in high-dimensional studies, and high mapping precision through accumulation of independent recombination events. Implementation of the Collaborative Cross has been ongoing at the Oak Ridge National Laboratory (ORNL) since May 2005. Production has been systematically managed using a software-assisted breeding program with fully traceable lineages, performed in a controlled environment. Currently, there are 650 lines in production, and close to 200 lines are now beyond their seventh generation of inbreeding. Retired breeders enter a high-throughput phenotyping protocol and DNA samples are banked for analyses of recombination history, allele drift and loss, and population structure. Herein we present a progress report of the Collaborative Cross breeding program at ORNL and a description of the kinds of investigations that this resource will support.


Asunto(s)
Bancos de Muestras Biológicas , Cruzamientos Genéticos , Laboratorios , Ratones Endogámicos/genética , Desarrollo de Programa , Animales , Cruzamiento , Femenino , Genotipo , Patrón de Herencia , Tamaño de la Camada , Masculino , Ratones , Fenotipo , Tennessee
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA