Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.649
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 185(4): 603-613.e15, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35026152

RESUMEN

SARS-CoV-2 mRNA vaccines induce robust anti-spike (S) antibody and CD4+ T cell responses. It is not yet clear whether vaccine-induced follicular helper CD4+ T (TFH) cell responses contribute to this outstanding immunogenicity. Using fine-needle aspiration of draining axillary lymph nodes from individuals who received the BNT162b2 mRNA vaccine, we evaluated the T cell receptor sequences and phenotype of lymph node TFH. Mining of the responding TFH T cell receptor repertoire revealed a strikingly immunodominant HLA-DPB1∗04-restricted response to S167-180 in individuals with this allele, which is among the most common HLA alleles in humans. Paired blood and lymph node specimens show that while circulating S-specific TFH cells peak one week after the second immunization, S-specific TFH persist at nearly constant frequencies for at least six months. Collectively, our results underscore the key role that robust TFH cell responses play in establishing long-term immunity by this efficacious human vaccine.


Asunto(s)
COVID-19/inmunología , COVID-19/virología , Inmunidad/inmunología , SARS-CoV-2/inmunología , Células T Auxiliares Foliculares/inmunología , Vacunación , Vacunas Sintéticas/inmunología , Vacunas de ARNm/inmunología , Adulto , Linfocitos B/inmunología , Vacuna BNT162/inmunología , COVID-19/sangre , Células Clonales , Estudios de Cohortes , Citocinas/metabolismo , Femenino , Centro Germinal/inmunología , Cadenas beta de HLA-DP/inmunología , Humanos , Epítopos Inmunodominantes/inmunología , Células Jurkat , Ganglios Linfáticos/metabolismo , Masculino , Persona de Mediana Edad , Péptidos/química , Péptidos/metabolismo , Multimerización de Proteína , Receptores de Antígenos de Linfocitos T/metabolismo
2.
Cell ; 184(15): 3936-3948.e10, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34192529

RESUMEN

In this study we profiled vaccine-induced polyclonal antibodies as well as plasmablast-derived mAbs from individuals who received SARS-CoV-2 spike mRNA vaccine. Polyclonal antibody responses in vaccinees were robust and comparable to or exceeded those seen after natural infection. However, the ratio of binding to neutralizing antibodies after vaccination was greater than that after natural infection and, at the monoclonal level, we found that the majority of vaccine-induced antibodies did not have neutralizing activity. We also found a co-dominance of mAbs targeting the NTD and RBD of SARS-CoV-2 spike and an original antigenic-sin like backboost to spikes of seasonal human coronaviruses OC43 and HKU1. Neutralizing activity of NTD mAbs but not RBD mAbs against a clinical viral isolate carrying E484K as well as extensive changes in the NTD was abolished, suggesting that a proportion of vaccine-induced RBD binding antibodies may provide substantial protection against viral variants carrying single E484K RBD mutations.


Asunto(s)
Anticuerpos Antivirales/inmunología , Vacunas contra la COVID-19/inmunología , ARN Mensajero/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación , Sustitución de Aminoácidos , Enzima Convertidora de Angiotensina 2/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/aislamiento & purificación , Anticuerpos Neutralizantes/inmunología , Formación de Anticuerpos/inmunología , Unión Competitiva , Humanos , Inmunoglobulina G/metabolismo , Mutación/genética , Dominios Proteicos , Hipermutación Somática de Inmunoglobulina/genética
3.
Cell ; 182(3): 744-753.e4, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32553273

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic with millions of human infections. One limitation to the evaluation of potential therapies and vaccines to inhibit SARS-CoV-2 infection and ameliorate disease is the lack of susceptible small animals in large numbers. Commercially available laboratory strains of mice are not readily infected by SARS-CoV-2 because of species-specific differences in their angiotensin-converting enzyme 2 (ACE2) receptors. Here, we transduced replication-defective adenoviruses encoding human ACE2 via intranasal administration into BALB/c mice and established receptor expression in lung tissues. hACE2-transduced mice were productively infected with SARS-CoV-2, and this resulted in high viral titers in the lung, lung pathology, and weight loss. Passive transfer of a neutralizing monoclonal antibody reduced viral burden in the lung and mitigated inflammation and weight loss. The development of an accessible mouse model of SARS-CoV-2 infection and pathogenesis will expedite the testing and deployment of therapeutics and vaccines.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/uso terapéutico , Betacoronavirus/inmunología , Infecciones por Coronavirus/terapia , Modelos Animales de Enfermedad , Neumonía Viral/terapia , Enzima Convertidora de Angiotensina 2 , Animales , COVID-19 , Chlorocebus aethiops , Infecciones por Coronavirus/virología , Femenino , Células HEK293 , Humanos , Inmunización Pasiva/métodos , Pulmón/metabolismo , Pulmón/virología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Noqueados , Pandemias , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/virología , SARS-CoV-2 , Transducción Genética , Células Vero , Carga Viral/inmunología
4.
Immunity ; 56(8): 1927-1938.e8, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37506693

RESUMEN

Neuraminidase (NA) is one of the two influenza virus surface glycoproteins, and antibodies that target it are an independent correlate of protection. However, our current understanding of NA antigenicity is incomplete. Here, we describe human monoclonal antibodies (mAbs) from a patient with a pandemic H1N1 virus infection in 2009. Two mAbs exhibited broad reactivity and inhibited NA enzyme activity of seasonal H1N1 viruses circulating before and after 2009, as well as viruses with avian or swine N1s. The mAbs provided robust protection from lethal challenge with human H1N1 and avian H5N1 viruses in mice, and both target an epitope on the lateral face of NA. In summary, we identified two broadly protective NA antibodies that share a novel epitope, inhibited NA activity, and provide protection against virus challenge in mice. Our work reaffirms that NA should be included as a target in future broadly protective or universal influenza virus vaccines.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Antivirales , Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Neuraminidasa , Anticuerpos Monoclonales/aislamiento & purificación , Anticuerpos Monoclonales/metabolismo , Anticuerpos Antivirales/aislamiento & purificación , Anticuerpos Antivirales/metabolismo , Neuraminidasa/química , Neuraminidasa/metabolismo , Humanos , Fragmentos Fab de Inmunoglobulinas/química , Microscopía por Crioelectrón , Epítopos , Ratones Endogámicos BALB C , Animales , Ratones , Gripe Humana/tratamiento farmacológico , Modelos Animales de Enfermedad
5.
Immunity ; 56(11): 2621-2634.e6, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37967533

RESUMEN

There is growing appreciation for neuraminidase (NA) as an influenza vaccine target; however, its antigenicity remains poorly characterized. In this study, we isolated three broadly reactive N2 antibodies from the plasmablasts of a single vaccinee, including one that cross-reacts with NAs from seasonal H3N2 strains spanning five decades. Although these three antibodies have diverse germline usages, they recognize similar epitopes that are distant from the NA active site and instead involve the highly conserved underside of NA head domain. We also showed that all three antibodies confer prophylactic and therapeutic protection in vivo, due to both Fc effector functions and NA inhibition through steric hindrance. Additionally, the contribution of Fc effector functions to protection in vivo inversely correlates with viral growth inhibition activity in vitro. Overall, our findings advance the understanding of NA antibody response and provide important insights into the development of a broadly protective influenza vaccine.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Infecciones por Orthomyxoviridae , Humanos , Gripe Humana/prevención & control , Neuraminidasa , Infecciones por Orthomyxoviridae/prevención & control , Subtipo H3N2 del Virus de la Influenza A , Epítopos , Anticuerpos Antivirales , Anticuerpos Monoclonales , Vacunación , Glicoproteínas Hemaglutininas del Virus de la Influenza
6.
Immunity ; 54(9): 2159-2166.e6, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34464596

RESUMEN

The emergence of SARS-CoV-2 antigenic variants with increased transmissibility is a public health threat. Some variants show substantial resistance to neutralization by SARS-CoV-2 infection- or vaccination-induced antibodies. Here, we analyzed receptor binding domain-binding monoclonal antibodies derived from SARS-CoV-2 mRNA vaccine-elicited germinal center B cells for neutralizing activity against the WA1/2020 D614G SARS-CoV-2 strain and variants of concern. Of five monoclonal antibodies that potently neutralized the WA1/2020 D614G strain, all retained neutralizing capacity against the B.1.617.2 variant, four also neutralized the B.1.1.7 variant, and only one, 2C08, also neutralized the B.1.351 and B.1.1.28 variants. 2C08 reduced lung viral load and morbidity in hamsters challenged with the WA1/2020 D614G, B.1.351, or B.1.617.2 strains. Clonal analysis identified 2C08-like public clonotypes among B cells responding to SARS-CoV-2 infection or vaccination in 41 out of 181 individuals. Thus, 2C08-like antibodies can be induced by SARS-CoV-2 vaccines and mitigate resistance by circulating variants of concern.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/metabolismo , Linfocitos B/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , Centro Germinal/inmunología , Pulmón/virología , SARS-CoV-2/fisiología , Animales , Células Cultivadas , Células Clonales , Cricetinae , Modelos Animales de Enfermedad , Humanos , Pruebas de Neutralización , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación , Carga Viral
7.
Nature ; 627(8002): 130-136, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38355793

RESUMEN

Genomic instability arising from defective responses to DNA damage1 or mitotic chromosomal imbalances2 can lead to the sequestration of DNA in aberrant extranuclear structures called micronuclei (MN). Although MN are a hallmark of ageing and diseases associated with genomic instability, the catalogue of genetic players that regulate the generation of MN remains to be determined. Here we analyse 997 mouse mutant lines, revealing 145 genes whose loss significantly increases (n = 71) or decreases (n = 74) MN formation, including many genes whose orthologues are linked to human disease. We found that mice null for Dscc1, which showed the most significant increase in MN, also displayed a range of phenotypes characteristic of patients with cohesinopathy disorders. After validating the DSCC1-associated MN instability phenotype in human cells, we used genome-wide CRISPR-Cas9 screening to define synthetic lethal and synthetic rescue interactors. We found that the loss of SIRT1 can rescue phenotypes associated with DSCC1 loss in a manner paralleling restoration of protein acetylation of SMC3. Our study reveals factors involved in maintaining genomic stability and shows how this information can be used to identify mechanisms that are relevant to human disease biology1.


Asunto(s)
Inestabilidad Genómica , Micronúcleos con Defecto Cromosómico , Animales , Humanos , Ratones , Cromosomas/genética , Daño del ADN , Inestabilidad Genómica/genética , Fenotipo , Sirtuina 1 , Mutaciones Letales Sintéticas
8.
Nature ; 629(8014): 1062-1068, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38720082

RESUMEN

Most chemistry and biology occurs in solution, in which conformational dynamics and complexation underlie behaviour and function. Single-molecule techniques1 are uniquely suited to resolving molecular diversity and new label-free approaches are reshaping the power of single-molecule measurements. A label-free single-molecule method2-16 capable of revealing details of molecular conformation in solution17,18 would allow a new microscopic perspective of unprecedented detail. Here we use the enhanced light-molecule interactions in high-finesse fibre-based Fabry-Pérot microcavities19-21 to detect individual biomolecules as small as 1.2 kDa, a ten-amino-acid peptide, with signal-to-noise ratios (SNRs) >100, even as the molecules are unlabelled and freely diffusing in solution. Our method delivers 2D intensity and temporal profiles, enabling the distinction of subpopulations in mixed samples. Notably, we observe a linear relationship between passage time and molecular radius, unlocking the potential to gather crucial information about diffusion and solution-phase conformation. Furthermore, mixtures of biomolecule isomers of the same molecular weight and composition but different conformation can also be resolved. Detection is based on the creation of a new molecular velocity filter window and a dynamic thermal priming mechanism that make use of the interplay between optical and thermal dynamics22,23 and Pound-Drever-Hall (PDH) cavity locking24 to reveal molecular motion even while suppressing environmental noise. New in vitro ways of revealing molecular conformation, diversity and dynamics can find broad potential for applications in the life and chemical sciences.


Asunto(s)
Péptidos , Imagen Individual de Molécula , Difusión , Isomerismo , Luz , Péptidos/análisis , Péptidos/química , Péptidos/efectos de la radiación , Relación Señal-Ruido , Imagen Individual de Molécula/métodos , Soluciones , Conformación Proteica , Peso Molecular , Movimiento (Física)
9.
Immunity ; 53(4): 852-863.e7, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-32976769

RESUMEN

Influenza B virus (IBV) infections can cause severe disease in children and the elderly. Commonly used antivirals have lower clinical effectiveness against IBV compared to influenza A viruses (IAV). Neuraminidase (NA), the second major surface protein on the influenza virus, is emerging as a target of broadly protective antibodies that recognize the NA active site of IAVs. However, similarly broadly protective antibodies against IBV NA have not been identified. Here, we isolated and characterized human monoclonal antibodies (mAbs) that target IBV NA from an IBV-infected patient. Two mAbs displayed broad and potent capacity to inhibit IBV NA enzymatic activity, neutralize the virus in vitro, and protect against lethal IBV infection in mice in prophylactic and therapeutic settings. These mAbs inserted long CDR-H3 loops into the NA active site, engaging residues highly conserved among IBV NAs. These mAbs provide a blueprint for the development of improved vaccines and therapeutics against IBVs.


Asunto(s)
Anticuerpos Antivirales/inmunología , Dominio Catalítico/inmunología , Virus de la Influenza B/inmunología , Neuraminidasa/inmunología , Proteínas Virales/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Línea Celular , Perros , Femenino , Células HEK293 , Humanos , Virus de la Influenza A/inmunología , Gripe Humana/inmunología , Leucocitos Mononucleares/inmunología , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos BALB C , Persona de Mediana Edad , Infecciones por Orthomyxoviridae/inmunología
10.
Nature ; 617(7961): 592-598, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37011668

RESUMEN

The primary two-dose SARS-CoV-2 mRNA vaccine series are strongly immunogenic in humans, but the emergence of highly infectious variants necessitated additional doses and the development of vaccines aimed at the new variants1-4. SARS-CoV-2 booster immunizations in humans primarily recruit pre-existing memory B cells5-9. However, it remains unclear whether the additional doses induce germinal centre reactions whereby re-engaged B cells can further mature, and whether variant-derived vaccines can elicit responses to variant-specific epitopes. Here we show that boosting with an mRNA vaccine against the original monovalent SARS-CoV-2 mRNA vaccine or the bivalent B.1.351 and B.1.617.2 (Beta/Delta) mRNA vaccine induced robust spike-specific germinal centre B cell responses in humans. The germinal centre response persisted for at least eight weeks, leading to significantly more mutated antigen-specific bone marrow plasma cell and memory B cell compartments. Spike-binding monoclonal antibodies derived from memory B cells isolated from individuals boosted with either the original SARS-CoV-2 spike protein, bivalent Beta/Delta vaccine or a monovalent Omicron BA.1-based vaccine predominantly recognized the original SARS-CoV-2 spike protein. Nonetheless, using a more targeted sorting approach, we isolated monoclonal antibodies that recognized the BA.1 spike protein but not the original SARS-CoV-2 spike protein from individuals who received the mRNA-1273.529 booster; these antibodies were less mutated and recognized novel epitopes within the spike protein, suggesting that they originated from naive B cells. Thus, SARS-CoV-2 booster immunizations in humans induce robust germinal centre B cell responses and can generate de novo B cell responses targeting variant-specific epitopes.


Asunto(s)
Linfocitos B , Vacunas contra la COVID-19 , COVID-19 , Centro Germinal , Inmunización Secundaria , Humanos , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/inmunología , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Linfocitos B/citología , Linfocitos B/inmunología , Centro Germinal/citología , Centro Germinal/inmunología , Células Plasmáticas/citología , Células Plasmáticas/inmunología , Células B de Memoria/citología , Células B de Memoria/inmunología , Epítopos de Linfocito B/genética , Epítopos de Linfocito B/inmunología
11.
Nature ; 604(7904): 141-145, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35168246

RESUMEN

Germinal centres (GC) are lymphoid structures in which B cells acquire affinity-enhancing somatic hypermutations (SHM), with surviving clones differentiating into memory B cells (MBCs) and long-lived bone marrow plasma cells1-5 (BMPCs). SARS-CoV-2 mRNA vaccination induces a persistent GC response that lasts for at least six months in humans6-8. The fate of responding GC B cells as well as the functional consequences of such persistence remain unknown. Here, we detected SARS-CoV-2 spike protein-specific MBCs in 42 individuals who had received two doses of the SARS-CoV-2 mRNA vaccine BNT162b2 six month earlier. Spike-specific IgG-secreting BMPCs were detected in 9 out of 11 participants. Using a combined approach of sequencing the B cell receptors of responding blood plasmablasts and MBCs, lymph node GC B cells and plasma cells and BMPCs from eight individuals and expression of the corresponding monoclonal antibodies, we tracked the evolution of 1,540 spike-specific B cell clones. On average, early blood spike-specific plasmablasts exhibited the lowest SHM frequencies. By contrast, SHM frequencies of spike-specific GC B cells increased by 3.5-fold within six months after vaccination. Spike-specific MBCs and BMPCs accumulated high levels of SHM, which corresponded with enhanced anti-spike antibody avidity in blood and enhanced affinity as well as neutralization capacity of BMPC-derived monoclonal antibodies. We report how the notable persistence of the GC reaction induced by SARS-CoV-2 mRNA vaccination in humans culminates in affinity-matured long-term antibody responses that potently neutralize the virus.


Asunto(s)
Linfocitos B , Vacuna BNT162 , Centro Germinal , Vacunación , Anticuerpos Monoclonales , Anticuerpos Antivirales , Linfocitos B/citología , Linfocitos B/inmunología , Vacuna BNT162/administración & dosificación , Vacuna BNT162/inmunología , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/virología , Centro Germinal/citología , Centro Germinal/inmunología , Humanos , ARN Mensajero/genética , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología
12.
Nature ; 595(7867): 421-425, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34030176

RESUMEN

Long-lived bone marrow plasma cells (BMPCs) are a persistent and essential source of protective antibodies1-7. Individuals who have recovered from COVID-19 have a substantially lower risk of reinfection with SARS-CoV-28-10. Nonetheless, it has been reported that levels of anti-SARS-CoV-2 serum antibodies decrease rapidly in the first few months after infection, raising concerns that long-lived BMPCs may not be generated and humoral immunity against SARS-CoV-2 may be short-lived11-13. Here we show that in convalescent individuals who had experienced mild SARS-CoV-2 infections (n = 77), levels of serum anti-SARS-CoV-2 spike protein (S) antibodies declined rapidly in the first 4 months after infection and then more gradually over the following 7 months, remaining detectable at least 11 months after infection. Anti-S antibody titres correlated with the frequency of S-specific plasma cells in bone marrow aspirates from 18 individuals who had recovered from COVID-19 at 7 to 8 months after infection. S-specific BMPCs were not detected in aspirates from 11 healthy individuals with no history of SARS-CoV-2 infection. We show that S-binding BMPCs are quiescent, which suggests that they are part of a stable compartment. Consistently, circulating resting memory B cells directed against SARS-CoV-2 S were detected in the convalescent individuals. Overall, our results indicate that mild infection with SARS-CoV-2 induces robust antigen-specific, long-lived humoral immune memory in humans.


Asunto(s)
Células de la Médula Ósea/citología , Células de la Médula Ósea/inmunología , COVID-19/inmunología , Células Plasmáticas/citología , Células Plasmáticas/inmunología , Adulto , Anciano , Supervivencia Celular , Femenino , Humanos , Memoria Inmunológica , Masculino , Persona de Mediana Edad , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Adulto Joven
13.
Nature ; 596(7870): 109-113, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34182569

RESUMEN

SARS-CoV-2 mRNA-based vaccines are about 95% effective in preventing COVID-191-5. The dynamics of antibody-secreting plasmablasts and germinal centre B cells induced by these vaccines in humans remain unclear. Here we examined antigen-specific B cell responses in peripheral blood (n = 41) and draining lymph nodes in 14 individuals who had received 2 doses of BNT162b2, an mRNA-based vaccine that encodes the full-length SARS-CoV-2 spike (S) gene1. Circulating IgG- and IgA-secreting plasmablasts that target the S protein peaked one week after the second immunization and then declined, becoming undetectable three weeks later. These plasmablast responses preceded maximal levels of serum anti-S binding and neutralizing antibodies to an early circulating SARS-CoV-2 strain as well as emerging variants, especially in individuals who had previously been infected with SARS-CoV-2 (who produced the most robust serological responses). By examining fine needle aspirates of draining axillary lymph nodes, we identified germinal centre B cells that bound S protein in all participants who were sampled after primary immunization. High frequencies of S-binding germinal centre B cells and plasmablasts were sustained in these draining lymph nodes for at least 12 weeks after the booster immunization. S-binding monoclonal antibodies derived from germinal centre B cells predominantly targeted the receptor-binding domain of the S protein, and fewer clones bound to the N-terminal domain or to epitopes shared with the S proteins of the human betacoronaviruses OC43 and HKU1. These latter cross-reactive B cell clones had higher levels of somatic hypermutation as compared to those that recognized only the SARS-CoV-2 S protein, which suggests a memory B cell origin. Our studies demonstrate that SARS-CoV-2 mRNA-based vaccination of humans induces a persistent germinal centre B cell response, which enables the generation of robust humoral immunity.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , Centro Germinal/inmunología , Células Plasmáticas/inmunología , Vacunas Sintéticas/inmunología , Adulto , Anciano , Animales , Anticuerpos Antivirales/inmunología , Vacuna BNT162 , COVID-19/prevención & control , Chlorocebus aethiops , Células Clonales/citología , Células Clonales/inmunología , Centro Germinal/citología , Voluntarios Sanos , Humanos , Persona de Mediana Edad , Células Plasmáticas/citología , SARS-CoV-2/inmunología , Factores de Tiempo , Células Vero , Vacunas de ARNm
14.
Chem Rev ; 124(11): 7379-7464, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38743869

RESUMEN

The utilization of visible light to mediate chemical reactions in fluid solutions has applications that range from solar fuel production to medicine and organic synthesis. These reactions are typically initiated by electron transfer between a photoexcited dye molecule (a photosensitizer) and a redox-active quencher to yield radical pairs that are intimately associated within a solvent cage. Many of these radicals undergo rapid thermodynamically favored "geminate" recombination and do not diffuse out of the solvent cage that surrounds them. Those that do escape the cage are useful reagents that may undergo subsequent reactions important to the above-mentioned applications. The cage escape process and the factors that determine the yields remain poorly understood despite decades of research motivated by their practical and fundamental importance. Herein, state-of-the-art research on light-induced electron transfer and cage escape that has appeared since the seminal 1972 review by J. P. Lorand entitled "The Cage Effect" is reviewed. This review also provides some background for those new to the field and discusses the cage escape process of both homolytic bond photodissociation and bimolecular light induced electron transfer reactions. The review concludes with some key goals and directions for future research that promise to elevate this very vibrant field to even greater heights.

15.
Nature ; 586(7827): 127-132, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32866963

RESUMEN

Influenza viruses remain a major public health threat. Seasonal influenza vaccination in humans primarily stimulates pre-existing memory B cells, which differentiate into a transient wave of circulating antibody-secreting plasmablasts1-3. This recall response contributes to 'original antigenic sin'-the selective increase of antibody species elicited by previous exposures to influenza virus antigens4. It remains unclear whether such vaccination can also induce germinal centre reactions in the draining lymph nodes, where diversification and maturation of recruited B cells can occur5. Here we used ultrasound-guided fine needle aspiration to serially sample the draining lymph nodes and investigate the dynamics and specificity of germinal centre B cell responses after influenza vaccination in humans. Germinal centre B cells that bind to influenza vaccine could be detected as early as one week after vaccination. In three out of eight participants, we detected vaccine-binding germinal centre B cells up to nine weeks after vaccination. Between 12% and 88% of the responding germinal centre B cell clones overlapped with B cells detected among early circulating plasmablasts. These shared B cell clones had high frequencies of somatic hypermutation and encoded broadly cross-reactive monoclonal antibodies. By contrast, vaccine-induced B cell clones detected only in the germinal centre compartment exhibited significantly lower frequencies of somatic hypermutation and predominantly encoded strain-specific monoclonal antibodies, which suggests a naive B cell origin. Some of these strain-specific monoclonal antibodies recognized epitopes that were not targeted by the early plasmablast response. Thus, influenza virus vaccination in humans can elicit a germinal centre reaction that recruits B cell clones that can target new epitopes, thereby broadening the spectrum of vaccine-induced protective antibodies.


Asunto(s)
Linfocitos B/inmunología , Centro Germinal/inmunología , Memoria Inmunológica/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Adulto , Animales , Células Clonales/inmunología , Mapeo Epitopo , Femenino , Centro Germinal/citología , Humanos , Masculino , Ratones
16.
Nat Methods ; 19(2): 223-230, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35132243

RESUMEN

Isotope tracing has helped to determine the metabolic activities of organs. Methods to probe metabolic heterogeneity within organs are less developed. We couple stable-isotope-labeled nutrient infusion to matrix-assisted laser desorption ionization imaging mass spectrometry (iso-imaging) to quantitate metabolic activity in mammalian tissues in a spatially resolved manner. In the kidney, we visualize gluconeogenic flux and glycolytic flux in the cortex and medulla, respectively. Tricarboxylic acid cycle substrate usage differs across kidney regions; glutamine and citrate are used preferentially in the cortex and fatty acids are used in the medulla. In the brain, we observe spatial gradations in carbon inputs to the tricarboxylic acid cycle and glutamate under a ketogenic diet. In a carbohydrate-rich diet, glucose predominates throughout but in a ketogenic diet, 3-hydroxybutyrate contributes most strongly in the hippocampus and least in the midbrain. Brain nitrogen sources also vary spatially; branched-chain amino acids contribute most in the midbrain, whereas ammonia contributes in the thalamus. Thus, iso-imaging can reveal the spatial organization of metabolic activity.


Asunto(s)
Encéfalo/metabolismo , Isótopos de Carbono/farmacocinética , Riñón/metabolismo , Isótopos de Nitrógeno/farmacocinética , Animales , Dieta , Enzimas , Gluconeogénesis , Ácido Glutámico/biosíntesis , Glucólisis , Masculino , Ratones Endogámicos C57BL , Imagen Molecular , Análisis de la Célula Individual , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masas en Tándem , Ácidos Tricarboxílicos/metabolismo , Flujo de Trabajo
17.
J Immunol ; 210(7): 947-958, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36779802

RESUMEN

COVID-19 disproportionately affects persons with HIV (PWH) in worldwide locations with limited access to SARS-CoV-2 vaccines. PWH exhibit impaired immune responses to some, but not all, vaccines. Lymph node (LN) biopsies from PWH demonstrate abnormal LN structure, including dysregulated germinal center (GC) architecture. It is not clear whether LN dysregulation prevents PWH from mounting Ag-specific GC responses in the draining LN following vaccination. To address this issue, we longitudinally collected blood and draining LN fine needle aspiration samples before and after SARS-CoV-2 vaccination from a prospective, observational cohort of 11 PWH on antiretroviral therapy: 2 who received a two-dose mRNA vaccine series and 9 who received a single dose of the Ad26.COV2.S vaccine. Following vaccination, we observed spike-specific Abs, spike-specific B and T cells in the blood, and spike-specific GC B cell and T follicular helper cell responses in the LN of both mRNA vaccine recipients. We detected spike-specific Abs in the blood of all Ad26.COV2.S recipients, and one of six sampled Ad26.COV2.S recipients developed a detectable spike-specific GC B and T follicular helper cell response in the draining LN. Our data show that PWH can mount Ag-specific GC immune responses in the draining LN following SARS-CoV-2 vaccination. Due to the small and diverse nature of this cohort and the limited number of available controls, we are unable to elucidate all potential factors contributing to the infrequent vaccine-induced GC response observed in the Ad26.COV2.S recipients. Our preliminary findings suggest this is a necessary area of future research.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Ad26COVS1 , SARS-CoV-2 , Estudios Prospectivos , COVID-19/prevención & control , Centro Germinal , Vacunación , Ganglios Linfáticos , Anticuerpos Antivirales
18.
Proc Natl Acad Sci U S A ; 119(21): e2202016119, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35537042

RESUMEN

Autophagy defects are a risk factor for inflammatory bowel diseases (IBDs) through unknown mechanisms. Whole-body conditional deletion of autophagy-related gene (Atg) Atg7 in adult mice (Atg7Δ/Δ) causes tissue damage and death within 3 mo due to neurodegeneration without substantial effect on intestine. In contrast, we report here that whole-body conditional deletion of other essential Atg genes Atg5 or Fip200/Atg17 in adult mice (Atg5Δ/Δ or Fip200Δ/Δ) caused death within 5 d due to rapid autophagy inhibition, elimination of ileum stem cells, and loss of barrier function. Atg5Δ/Δ mice lost PDGFRα+ mesenchymal cells (PMCs) and Wnt signaling essential for stem cell renewal, which were partially rescued by exogenous Wnt. Matrix-assisted laser desorption ionization coupled to mass spectrometry imaging (MALDI-MSI) of Atg5Δ/Δ ileum revealed depletion of aspartate and nucleotides, consistent with metabolic insufficiency underlying PMC loss. The difference in the autophagy gene knockout phenotypes is likely due to distinct kinetics of autophagy loss, as deletion of Atg5 more gradually extended lifespan phenocopying deletion of Atg7 or Atg12. Thus, autophagy is required for PMC metabolism and ileum stem cell and mammalian survival. Failure to maintain PMCs through autophagy may therefore contribute to IBD.


Asunto(s)
Autofagia , Intestinos , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas , Células Madre , Animales , Autofagia/genética , Proteína 5 Relacionada con la Autofagia , Proteína 7 Relacionada con la Autofagia , Proteínas Relacionadas con la Autofagia , Supervivencia Celular , Ratones , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Células Madre/metabolismo
19.
Pediatr Emerg Care ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38471759

RESUMEN

OBJECTIVE: Pediatric sepsis screening is becoming the standard of care for children presenting to the emergency department (ED) and has been shown to improve recognition of severe sepsis, but it is unknown if these screening tools can predict progression of disease. The objective of this study was to determine if any elements of a sepsis triage trigger tool were predictive of progression to hypotensive shock in children presenting to the ED with fever and tachycardia. METHODS: This study is a retrospective case-control study of children ≤18 years presenting to an ED with fever and tachycardia, comparing those who went on to develop hypotensive shock in the subsequent 24 hours (case) to those who did not (control). Primary outcome was the proportion of encounters where the patient had specific abnormal vital signs or clinical signs as components of the sepsis triage score. The secondary outcomes were the proportion of encounters where the patient had a sepsis risk factor. RESULTS: During the study period, there were 94 patients who met case criteria and 186 controls selected. In the adjusted multivariable model, the 2 components of the sepsis triage score that were more common in case patients were the presence of severe cerebral palsy (adjusted odds ratio, 9.4 [3.7, 23.9]) and abnormal capillary refill at triage (adjusted odds ratio, 3.1 [1.4, 6.9]). CONCLUSIONS: Among children who present to a pediatric ED with fever and tachycardia, those with prolonged capillary refill at triage or severe cerebral palsy were more likely to progress to decompensated septic shock, despite routine ED care.

20.
Immunol Rev ; 296(1): 9-23, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32470215

RESUMEN

Diverse B cell responses are important for generating antibody-mediated protection against highly variable pathogens. While some antigens can trigger T-independent B cell proliferation and short-term antibody production, development of long-term humoral immunity requires T-dependent B cell responses. The "two-signal" model of B cell activation has long been invoked to explain alternate B cell recruitment into immune response to foreign antigens vs. induction of tolerance to self-antigens. However, a number of other factors appear to influence the fate of mature B cells responding to antigen in vivo. In this review, we will discuss how various spatiotemporal scenarios of antigen access into secondary lymphoid organs, antigen valency and cellular environment of antigen acquisition by B cells, duration of B cell access to antigen and the timing of T cell help may affect follicular B cell fate, including death, survival, anergy, and recruitment into T-dependent responses. We will also highlight unresolved questions related to B cell activation and tolerance in vivo that may have important implications for vaccine development and autoimmunity.


Asunto(s)
Antígenos/inmunología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Activación de Linfocitos/inmunología , Transducción de Señal , Animales , Formación de Anticuerpos/inmunología , Autoantígenos/inmunología , Autoinmunidad , Comunicación Celular/inmunología , Interacciones Huésped-Patógeno/inmunología , Humanos , Tolerancia Inmunológica , Inmunidad Humoral , Linfocitos T/inmunología , Linfocitos T/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA