Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.812
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(23): 5791-5806.e19, 2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34715025

RESUMEN

Dynein-decorated doublet microtubules (DMTs) are critical components of the oscillatory molecular machine of cilia, the axoneme, and have luminal surfaces patterned periodically by microtubule inner proteins (MIPs). Here we present an atomic model of the 48-nm repeat of a mammalian DMT, derived from a cryoelectron microscopy (cryo-EM) map of the complex isolated from bovine respiratory cilia. The structure uncovers principles of doublet microtubule organization and features specific to vertebrate cilia, including previously unknown MIPs, a luminal bundle of tektin filaments, and a pentameric dynein-docking complex. We identify a mechanism for bridging 48- to 24-nm periodicity across the microtubule wall and show that loss of the proteins involved causes defective ciliary motility and laterality abnormalities in zebrafish and mice. Our structure identifies candidate genes for diagnosis of ciliopathies and provides a framework to understand their functions in driving ciliary motility.


Asunto(s)
Cilios/ultraestructura , Microscopía por Crioelectrón , Mamíferos/metabolismo , Proteínas/metabolismo , Proteínas/ultraestructura , Secuencia de Aminoácidos , Animales , Bovinos , Cilios/metabolismo , Dineínas/metabolismo , Embrión de Mamíferos/metabolismo , Femenino , Masculino , Ratones Endogámicos C57BL , Proteínas de Microtúbulos/química , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Modelos Moleculares , Mutación/genética , Tráquea/anatomía & histología , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
2.
Development ; 151(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38587174

RESUMEN

The gastrointestinal (GI) tract is complex and consists of multiple organs with unique functions. Rare gene variants can cause congenital malformations of the human GI tract, although the molecular basis of these has been poorly studied. We identified a patient with compound-heterozygous variants in RFX6 presenting with duodenal malrotation and atresia, implicating RFX6 in development of the proximal intestine. To identify how mutations in RFX6 impact intestinal patterning and function, we derived induced pluripotent stem cells from this patient to generate human intestinal organoids (HIOs). We identified that the duodenal HIOs and human tissues had mixed regional identity, with gastric and ileal features. CRISPR-mediated correction of RFX6 restored duodenal identity. We then used gain- and loss-of-function and transcriptomic approaches in HIOs and Xenopus embryos to identify that PDX1 is a downstream transcriptional target of RFX6 required for duodenal development. However, RFX6 had additional PDX1-independent transcriptional targets involving multiple components of signaling pathways that are required for establishing early regional identity in the GI tract. In summary, we have identified RFX6 as a key regulator in intestinal patterning that acts by regulating transcriptional and signaling pathways.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio , Organoides , Factores de Transcripción del Factor Regulador X , Transactivadores , Humanos , Factores de Transcripción del Factor Regulador X/genética , Factores de Transcripción del Factor Regulador X/metabolismo , Animales , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Transactivadores/metabolismo , Transactivadores/genética , Organoides/metabolismo , Organoides/embriología , Duodeno/metabolismo , Duodeno/embriología , Intestinos/embriología , Atresia Intestinal/genética , Células Madre Pluripotentes Inducidas/metabolismo , Tipificación del Cuerpo/genética , Transducción de Señal/genética , Mutación/genética
3.
Proc Natl Acad Sci U S A ; 121(14): e2400066121, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38536754

RESUMEN

The inherently low signal-to-noise ratio of NMR and MRI is now being addressed by hyperpolarization methods. For example, iridium-based catalysts that reversibly bind both parahydrogen and ligands in solution can hyperpolarize protons (SABRE) or heteronuclei (X-SABRE) on a wide variety of ligands, using a complex interplay of spin dynamics and chemical exchange processes, with common signal enhancements between 103 and 104. This does not approach obvious theoretical limits, and further enhancement would be valuable in many applications (such as imaging mM concentration species in vivo). Most SABRE/X-SABRE implementations require far lower fields (µT-mT) than standard magnetic resonance (>1T), and this gives an additional degree of freedom: the ability to fully modulate fields in three dimensions. However, this has been underexplored because the standard simplifying theoretical assumptions in magnetic resonance need to be revisited. Here, we take a different approach, an evolutionary strategy algorithm for numerical optimization, multi-axis computer-aided heteronuclear transfer enhancement for SABRE (MACHETE-SABRE). We find nonintuitive but highly efficient multiaxial pulse sequences which experimentally can produce a sevenfold improvement in polarization over continuous excitation. This approach optimizes polarization differently than traditional methods, thus gaining extra efficiency.

4.
Circ Res ; 134(9): 1048-1060, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38662864

RESUMEN

Environmental stressors associated with human activities (eg, air and noise pollution, light disturbance at night) and climate change (eg, heat, wildfires, extreme weather events) are increasingly recognized as contributing to cardiovascular morbidity and mortality. These harmful exposures have been shown to elicit changes in stress responses, circadian rhythms, immune cell activation, and oxidative stress, as well as traditional cardiovascular risk factors (eg, hypertension, diabetes, obesity) that promote cardiovascular diseases. In this overview, we summarize evidence from human and animal studies of the impacts of environmental exposures and climate change on cardiovascular health. In addition, we discuss strategies to reduce the impact of environmental risk factors on current and future cardiovascular disease burden, including urban planning, personal monitoring, and mitigation measures.


Asunto(s)
Enfermedades Cardiovasculares , Cambio Climático , Exposición a Riesgos Ambientales , Humanos , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/epidemiología , Animales , Exposición a Riesgos Ambientales/efectos adversos , Factores de Riesgo
5.
Proc Natl Acad Sci U S A ; 120(20): e2213271120, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37159478

RESUMEN

Marine picocyanobacteria Prochlorococcus and Synechococcus, the most abundant photosynthetic cells in the oceans, are generally thought to have a primarily single-celled and free-living lifestyle. However, while studying the ability of picocyanobacteria to supplement photosynthetic carbon fixation with the use of exogenous organic carbon, we found the widespread occurrence of genes for breaking down chitin, an abundant source of organic carbon that exists primarily as particles. We show that cells that encode a chitin degradation pathway display chitin degradation activity, attach to chitin particles, and show enhanced growth under low light conditions when exposed to chitosan, a partially deacetylated soluble form of chitin. Marine chitin is largely derived from arthropods, which underwent major diversifications 520 to 535 Mya, close to when marine picocyanobacteria are inferred to have appeared in the ocean. Phylogenetic analyses confirm that the chitin utilization trait was acquired at the root of marine picocyanobacteria. Together this leads us to postulate that attachment to chitin particles allowed benthic cyanobacteria to emulate their mat-based lifestyle in the water column, initiating their expansion into the open ocean, seeding the rise of modern marine ecosystems. Subsequently, transitioning to a constitutive planktonic life without chitin associations led to cellular and genomic streamlining along a major early branch within Prochlorococcus. Our work highlights how the emergence of associations between organisms from different trophic levels, and their coevolution, creates opportunities for colonizing new environments. In this view, the rise of ecological complexity and the expansion of the biosphere are deeply intertwined processes.


Asunto(s)
Quitosano , Prochlorococcus , Quitina , Ecosistema , Filogenia , Carbono , Plancton/genética , Prochlorococcus/genética
6.
PLoS Pathog ; 19(2): e1010884, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36730464

RESUMEN

Schistosoma mansoni employs immune evasion and immunosuppression to overcome immune responses mounted by its snail and human hosts. Myriad immunomodulating factors underlie this process, some of which are proteases. Here, we demonstrate that one protease, an invadolysin we have termed SmCI-1, is released from the acetabular glands of S. mansoni cercaria and is involved in creating an immunological milieu favorable for survival of the parasite. The presence of SmCI-1 in the cercarial stage of S. mansoni is released during transformation into the schistosomula. SmCI-1 functions as a metalloprotease with the capacity to cleave collagen type IV, gelatin and fibrinogen. Additionally, complement component C3b is cleaved by this protease, resulting in inhibition of the classical and alternative complement pathways. Using SmCI-1 knockdown cercariae, we demonstrate that SmCI-1 protects schistosomula from complement-mediated lysis in human plasma. We also assess the effect of SmCI-1 on cytokine release from human peripheral blood mononuclear cells, providing compelling evidence that SmCI-1 promotes an anti-inflammatory microenvironment by enhancing production of IL-10 and suppressing the production of inflammatory cytokines like IL-1B and IL-12p70 and those involved in eosinophil recruitment and activation, like Eotaxin-1 and IL-5. Finally, we utilize the SmCI-1 knockdown cercaria in a mouse model of infection, revealing a role for SmCI-1 in S. mansoni survival.


Asunto(s)
Schistosoma mansoni , Esquistosomiasis mansoni , Animales , Ratones , Humanos , Leucocitos Mononucleares , Cercarias , Proteínas del Sistema Complemento , Metaloproteasas , Inmunidad
7.
Stem Cells ; 42(4): 385-401, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38206366

RESUMEN

Pancreatic ductal progenitor cells have been proposed to contribute to adult tissue maintenance and regeneration after injury, but the identity of such ductal cells remains elusive. Here, from adult mice, we identify a near homogenous population of ductal progenitor-like clusters, with an average of 8 cells per cluster. They are a rare subpopulation, about 0.1% of the total pancreatic cells, and can be sorted using a fluorescence-activated cell sorter with the CD133highCD71lowFSCmid-high phenotype. They exhibit properties in self-renewal and tri-lineage differentiation (including endocrine-like cells) in a unique 3-dimensional colony assay system. An in vitro lineage tracing experiment, using a novel HprtDsRed/+ mouse model, demonstrates that a single cell from a cluster clonally gives rise to a colony. Droplet RNAseq analysis demonstrates that these ductal clusters express embryonic multipotent progenitor cell markers Sox9, Pdx1, and Nkx6-1, and genes involved in actin cytoskeleton regulation, inflammation responses, organ development, and cancer. Surprisingly, these ductal clusters resist prolonged trypsin digestion in vitro, preferentially survive in vivo after a severe acinar cell injury and become proliferative within 14 days post-injury. Thus, the ductal clusters are the fundamental units of progenitor-like cells in the adult murine pancreas with implications in diabetes treatment and tumorigenicity.


Asunto(s)
Células Acinares , Conductos Pancreáticos , Ratones , Animales , Páncreas , Células Madre , Diferenciación Celular
8.
Proc Natl Acad Sci U S A ; 119(21): e2116311119, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35580181

RESUMEN

Does local partisan context influence the adoption of prosocial behavior? Using a nationwide survey of 60,000 adults and geographic data on over 180 million registered voters, we investigate whether neighborhood partisan composition affects a publicly observable and politicized behavior: wearing a mask. We find that Republicans are less likely to wear masks in public as the share of Republicans in their zip codes increases. Democratic mask wearing, however, is unaffected by local partisan context. Consequently, the partisan gap in mask wearing is largest in Republican neighborhoods, and less apparent in Democratic areas. These effects are distinct from other contextual effects such as variations in neighborhood race, income, or education. In contrast, partisan context has significantly reduced influence on unobservable public health recommendations like COVID-19 vaccination and no influence on nonpoliticized behaviors like flu vaccination, suggesting that differences in mask wearing reflect the publicly observable and politicized nature of the behavior instead of underlying differences in dispositions toward medical care.


Asunto(s)
Altruismo , COVID-19 , Máscaras , Política , COVID-19/epidemiología , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Conducta de Masa , Estados Unidos , Vacunación/psicología
9.
Proc Natl Acad Sci U S A ; 119(38): e2200252119, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36095212

RESUMEN

In humans, the uterus undergoes a dramatic transformation to form an endometrial stroma-derived secretory tissue, termed decidua, during early pregnancy. The decidua secretes various factors that act in an autocrine/paracrine manner to promote stromal differentiation, facilitate maternal angiogenesis, and influence trophoblast differentiation and development, which are critical for the formation of a functional placenta. Here, we investigated the mechanisms by which decidual cells communicate with each other and with other cell types within the uterine milieu. We discovered that primary human endometrial stromal cells (HESCs) secrete extracellular vesicles (EVs) during decidualization and that this process is controlled by a conserved HIF2α-RAB27B pathway. Mass spectrometry revealed that the decidual EVs harbor a variety of protein cargo, including cell signaling molecules, growth modulators, metabolic regulators, and factors controlling endothelial cell expansion and remodeling. We tested the hypothesis that EVs secreted by the decidual cells mediate functional communications between various cell types within the uterus. We demonstrated that the internalization of EVs, specifically those carrying the glucose transporter 1 (GLUT1), promotes glucose uptake in recipient HESCs, supporting and advancing the decidualization program. Additionally, delivery of HESC-derived EVs into human endothelial cells stimulated their proliferation and led to enhanced vascular network formation. Strikingly, stromal EVs also promoted the differentiation of trophoblast stem cells into the extravillous trophoblast lineage. Collectively, these findings provide a deeper understanding of the pleiotropic roles played by EVs secreted by the decidual cells to ensure coordination of endometrial differentiation and angiogenesis with trophoblast function during the progressive phases of decidualization and placentation.


Asunto(s)
Decidua , Vesículas Extracelulares , Trofoblastos , Diferenciación Celular , Decidua/citología , Decidua/fisiología , Células Endoteliales/citología , Células Endoteliales/fisiología , Vesículas Extracelulares/fisiología , Femenino , Humanos , Neovascularización Fisiológica , Embarazo , Células del Estroma/citología , Células del Estroma/fisiología , Trofoblastos/citología , Trofoblastos/fisiología
10.
Biophys J ; 123(1): 68-79, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-37978799

RESUMEN

Measuring protein thermostability provides valuable information on the biophysical rules that govern the structure-energy relationships of proteins. However, such measurements remain a challenge for membrane proteins. Here, we introduce a new experimental system to evaluate membrane protein thermostability. This system leverages a recently developed nonfluorescent membrane scaffold protein to reconstitute proteins into nanodiscs and is coupled with a nano-format of differential scanning fluorimetry (nanoDSF). This approach offers a label-free and direct measurement of the intrinsic tryptophan fluorescence of the membrane protein as it unfolds in solution without signal interference from the "dark" nanodisc. In this work, we demonstrate the application of this method using the disulfide bond formation protein B (DsbB) as a test membrane protein. NanoDSF measurements of DsbB reconstituted in dark nanodiscs loaded with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dimyristoyl-sn-glycero-3-phosphorylglycerol (DMPG) lipids show a complex biphasic thermal unfolding pattern with a minor unfolding transition followed by a major transition. The inflection points of the thermal denaturation curve reveal two distinct unfolding midpoint melting temperatures (Tm) of 70.5°C and 77.5°C, consistent with a three-state unfolding model. Further, we show that the catalytically conserved disulfide bond between residues C41 and C130 drives the intermediate state of the unfolding pathway for DsbB in a DMPC and DMPG nanodisc. To extend the utility of this method, we evaluate and compare the thermostability of DsbB in different lipid environments. We introduce this method as a new tool that can be used to understand how compositionally and biophysically complex lipid environments drive membrane protein stability.


Asunto(s)
Dimiristoilfosfatidilcolina , Proteínas de la Membrana , Dimiristoilfosfatidilcolina/química , Temperatura , Fluorometría , Disulfuros , Membrana Dobles de Lípidos/química
11.
J Bacteriol ; 206(3): e0038223, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38411048

RESUMEN

Hemolytic phospholipase C, PlcH, is an important virulence factor for Pseudomonas aeruginosa. PlcH preferentially hydrolyzes sphingomyelin and phosphatidylcholine, and this hydrolysis activity drives tissue damage and inflammation and interferes with the oxidative burst of immune cells. Among other contributors, transcription of plcH was previously shown to be induced by phosphate starvation via PhoB and the choline metabolite, glycine betaine, via GbdR. Here, we show that sphingosine can induce plcH transcription and result in secreted PlcH enzyme activity. This induction is dependent on the sphingosine-sensing transcriptional regulator SphR. The SphR induction of plcH occurs from the promoter for the gene upstream of plcH that encodes the neutral ceramidase, CerN, and transcriptional readthrough of the cerN transcription terminator. Evidence for these conclusions came from mutation of the SphR binding site in the cerN promoter, mutation of the cerN terminator, enhancement of cerN termination by adding the rrnB terminator, and reverse transcriptase PCR (RT-PCR) showing that the intergenic region between cerN and plcH is made as RNA during sphingosine, but not choline, induction. We also observed that, like glycine betaine induction, sphingosine induction of plcH is under catabolite repression control, which likely explains why such induction was not seen in other studies using sphingosine in rich media. The addition of sphingosine as a novel inducer for PlcH points to the regulation of plcH transcription as a site for the integration of multiple host-derived signals. IMPORTANCE: PlcH is a secreted phospholipase C/sphingomyelinase that is important for the virulence of Pseudomonas aeruginosa. Here, we show that sphingosine, which presents itself or as a product of P. aeruginosa sphingomyelinase and ceramidase activity, leads to the induction of plcH transcription. This transcriptional induction occurs from the promoter of the upstream ceramidase gene generating a conditional operon. The transcript on which plcH resides, therefore, is different depending on which host molecule or condition leads to induction, and this may have implications for PlcH post-transcriptional regulation. This work also adds to our understanding of P. aeruginosa with host-derived sphingolipids.


Asunto(s)
Betaína , Pseudomonas aeruginosa , Betaína/metabolismo , Pseudomonas aeruginosa/metabolismo , Esfingosina/metabolismo , Esfingomielina Fosfodiesterasa/genética , Esfingomielina Fosfodiesterasa/metabolismo , Fosfolipasas de Tipo C/genética , Fosfolipasas de Tipo C/metabolismo , Ceramidasas/metabolismo
12.
Am J Physiol Cell Physiol ; 326(5): C1451-C1461, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38525539

RESUMEN

Acute pyelonephritis (APN) is most frequently caused by uropathogenic Escherichia coli (UPEC), which ascends from the bladder to the kidneys during a urinary tract infection. Patients with APN have been reported to have reduced renal concentration capacity under challenged conditions, polyuria, and increased aquaporin-2 (AQP2) excretion in the urine. We have recently shown increased AQP2 accumulation in the plasma membrane in cell cultures exposed to E. coli lysates and in the apical plasma membrane of inner medullary collecting ducts in a 5-day APN mouse model. This study aimed to investigate if AQP2 expression in host cells increases UPEC infection efficiency and to identify specific bacterial components that mediate AQP2 plasma membrane insertion. As the transepithelial water permeability in the collecting duct is codetermined by AQP3 and AQP4, we also investigated whether AQP3 and AQP4 localization is altered in the APN mouse model. We show that AQP2 expression does not increase UPEC infection efficiency and that AQP2 was targeted to the plasma membrane in AQP2-expressing cells in response to the two pathogen-associated molecular patterns (PAMPs), lipopolysaccharide and peptidoglycan. In contrast to AQP2, the subcellular localizations of AQP1, AQP3, and AQP4 were unaffected both in lysate-incubated cell cultures and in the APN mouse model. Our finding demonstrated that cellular exposure to lipopolysaccharide and peptidoglycan can trigger the insertion of AQP2 in the plasma membrane revealing a new regulatory pathway for AQP2 plasma membrane translocation, which may potentially be exploited in intervention strategies.NEW & NOTEWORTHY Acute pyelonephritis (APN) is associated with reduced renal concentration capacity and increased aquaporin-2 (AQP2) excretion. Uropathogenic Escherichia coli (UPEC) mediates changes in the subcellular localization of AQP2 and we show that in vitro, these changes could be elicited by two pathogen-associated molecular patterns (PAMPs), namely, lipopolysaccharide and peptidoglycan. UPEC infection was unaltered by AQP2 expression and the other renal AQPs (AQP1, AQP3, and AQP4) were unaltered in APN.


Asunto(s)
Acuaporina 2 , Acuaporina 3 , Pielonefritis , Escherichia coli Uropatógena , Pielonefritis/metabolismo , Pielonefritis/microbiología , Pielonefritis/patología , Animales , Acuaporina 2/metabolismo , Ratones , Escherichia coli Uropatógena/metabolismo , Acuaporina 3/metabolismo , Acuaporina 3/genética , Enfermedad Aguda , Infecciones por Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/patología , Lipopolisacáridos/toxicidad , Lipopolisacáridos/farmacología , Membrana Celular/metabolismo , Humanos , Acuaporina 4/metabolismo , Acuaporina 4/genética , Peptidoglicano/metabolismo , Riñón/metabolismo , Riñón/patología , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
13.
BMC Genomics ; 25(1): 204, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38395768

RESUMEN

Medicago truncatula, model legume and alfalfa relative, has served as an essential resource for advancing our understanding of legume physiology, functional genetics, and crop improvement traits. Necrotrophic fungus, Ascochyta medicaginicola, the causal agent of spring black stem (SBS) and leaf spot is a devasting foliar disease of alfalfa affecting stand survival, yield, and forage quality. Host resistance to SBS disease is poorly understood, and control methods rely on cultural practices. Resistance has been observed in M. truncatula accession SA27063 (HM078) with two recessively inherited quantitative-trait loci (QTL), rnpm1 and rnpm2, previously reported. To shed light on host resistance, we carried out a de novo genome assembly of HM078. The genome, referred to as MtHM078 v1.0, is comprised of 23 contigs totaling 481.19 Mbp. Notably, this assembly contains a substantial amount of novel centromere-related repeat sequences due to deep long-read sequencing. Genome annotation resulted in 98.4% of BUSCO fabales proteins being complete. The assembly enabled sequence-level analysis of rnpm1 and rnpm2 for gene content, synteny, and structural variation between SBS-resistant accession SA27063 (HM078) and SBS-susceptible accession A17 (HM101). Fourteen candidate genes were identified, and some have been implicated in resistance to necrotrophic fungi. Especially interesting candidates include loss-of-function events in HM078 because they fit the inverse gene-for-gene model, where resistance is recessively inherited. In rnpm1, these include a loss-of-function in a disease resistance gene due to a premature stop codon, and a 10.85 kbp retrotransposon-like insertion disrupting a ubiquitin conjugating E2. In rnpm2, we identified a frameshift mutation causing a loss-of-function in a glycosidase, as well as a missense and frameshift mutation altering an F-box family protein. This study generated a high-quality genome of HM078 and has identified promising candidates, that once validated, could be further studied in alfalfa to enhance disease resistance.


Asunto(s)
Resistencia a la Enfermedad , Medicago truncatula , Resistencia a la Enfermedad/genética , Medicago truncatula/genética , Sitios de Carácter Cuantitativo , Proteínas/genética , Fenotipo , Medicago sativa/genética
14.
Ecol Lett ; 27(6): e14450, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38857323

RESUMEN

Fire and herbivory interact to alter ecosystems and carbon cycling. In savannas, herbivores can reduce fire activity by removing grass biomass, but the size of these effects and what regulates them remain uncertain. To examine grazing effects on fuels and fire regimes across African savannas, we combined data from herbivore exclosure experiments with remotely sensed data on fire activity and herbivore density. We show that, broadly across African savannas, grazing herbivores substantially reduce both herbaceous biomass and fire activity. The size of these effects was strongly associated with grazing herbivore densities, and surprisingly, was mostly consistent across different environments. A one-zebra increase in herbivore biomass density (~100 kg/km2 of metabolic biomass) resulted in a ~53 kg/ha reduction in standing herbaceous biomass and a ~0.43 percentage point reduction in burned area. Our results indicate that fire models can be improved by incorporating grazing effects on grass biomass.


Asunto(s)
Biomasa , Incendios , Pradera , Herbivoria , Animales , Poaceae/fisiología , África
15.
Am J Physiol Lung Cell Mol Physiol ; 326(3): L226-L238, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38150545

RESUMEN

Cell therapy is a potential treatment for cystic fibrosis (CF). However, cell engraftment into the airway epithelium is challenging. Here, we model cell engraftment in vitro using the air-liquid interface (ALI) culture system by injuring well-differentiated CF ALI cultures and delivering non-CF cells at the time of peak injury. Engraftment efficiency was quantified by measuring chimerism by droplet digital PCR and functional ion transport in Ussing chambers. Using this model, we found that human bronchial epithelial cells (HBECs) engraft more efficiently when they are cultured by conditionally reprogrammed cell (CRC) culture methods. Cell engraftment into the airway epithelium requires airway injury, but the extent of injury needed is unknown. We compared three injury models and determined that severe injury with partial epithelial denudation facilitates long-term cell engraftment and functional CFTR recovery up to 20% of wildtype function. The airway epithelium promptly regenerates in response to injury, creating competition for space and posing a barrier to effective engraftment. We examined competition dynamics by time-lapse confocal imaging and found that delivered cells accelerate airway regeneration by incorporating into the epithelium. Irradiating the repairing epithelium granted engrafting cells a competitive advantage by diminishing resident stem cell proliferation. Intentionally, causing severe injury to the lungs of people with CF would be dangerous. However, naturally occurring events like viral infection can induce similar epithelial damage with patches of denuded epithelium. We found that viral preconditioning promoted effective engraftment of cells primed for viral resistance.NEW & NOTEWORTHY Cell therapy is a potential treatment for cystic fibrosis (CF). Here, we model cell engraftment by injuring CF air-liquid interface cultures and delivering non-CF cells. Successful engraftment required severe epithelial injury. Intentionally injuring the lungs to this extent would be dangerous. However, naturally occurring events like viral infection induce similar epithelial damage. We found that viral preconditioning promoted the engraftment of cells primed for viral resistance leading to CFTR functional recovery to 20% of the wildtype.


Asunto(s)
Fibrosis Quística , Virosis , Humanos , Fibrosis Quística/terapia , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Epitelio , Células Epiteliales , Tratamiento Basado en Trasplante de Células y Tejidos , Células Cultivadas
16.
Eur J Neurosci ; 59(1): 17-35, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37994250

RESUMEN

Serotonin modulates corticospinal excitability, motoneurone firing rates and contractile strength via 5-HT2 receptors. However, the effects of these receptors on cortical and motoneurone excitability during voluntary contractions have not been explored in humans. Therefore, the purpose of this study was to investigate how 5-HT2 antagonism affects corticospinal and motoneuronal excitability with and without descending drive to motoneurones. Twelve individuals (aged 24 ± 4 years) participated in a double-blind, placebo-controlled, crossover study, whereby the 5-HT2 antagonist cyproheptadine was administered. Transcranial magnetic stimulation (TMS) was delivered to the motor cortex to produce motor evoked potentials (MEPs), and electrical stimulation at the cervicomedullary junction was used to generate cervicomedullary motor evoked potentials (CMEPs) in the biceps brachii at rest and during a range of submaximal elbow flexions. Evoked potentials were also obtained after a conditioning TMS pulse to produce conditioned MEPs and CMEPs (100 ms inter-stimulus interval). 5-HT2 antagonism reduced maximal torque (p < 0.001), and compared to placebo, reduced unconditioned MEP amplitude at rest (p = 0.003), conditioned MEP amplitude at rest (p = 0.033) and conditioned MEP amplitude during contractions (p = 0.020). 5-HT2 antagonism also increased unconditioned CMEP amplitude during voluntary contractions (p = 0.041) but not at rest. Although 5-HT2 antagonism increased long-interval intracortical inhibition, net corticospinal excitability was unaffected during voluntary contractions. Given that spinal motoneurone excitability was only affected when descending drive to motoneurones was present, the current study indicates that excitatory drive is necessary for 5-HT2 receptors to regulate motoneurone excitability but not intracortical circuits.


Asunto(s)
Receptores de Serotonina 5-HT2 , Serotonina , Humanos , Estudios Cruzados , Estimulación Eléctrica , Electromiografía , Potenciales Evocados Motores/fisiología , Neuronas Motoras/fisiología , Músculo Esquelético/fisiología , Tractos Piramidales/fisiología , Serotonina/farmacología , Estimulación Magnética Transcraneal , Adulto Joven , Adulto , Método Doble Ciego
17.
Am J Hum Genet ; 108(9): 1692-1709, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34375587

RESUMEN

Kainate receptors (KARs) are glutamate-gated cation channels with diverse roles in the central nervous system. Bi-allelic loss of function of the KAR-encoding gene GRIK2 causes a nonsyndromic neurodevelopmental disorder (NDD) with intellectual disability and developmental delay as core features. The extent to which mono-allelic variants in GRIK2 also underlie NDDs is less understood because only a single individual has been reported previously. Here, we describe an additional eleven individuals with heterozygous de novo variants in GRIK2 causative for neurodevelopmental deficits that include intellectual disability. Five children harbored recurrent de novo variants (three encoding p.Thr660Lys and two p.Thr660Arg), and four children and one adult were homozygous for a previously reported variant (c.1969G>A [p.Ala657Thr]). Individuals with shared variants had some overlapping behavioral and neurological dysfunction, suggesting that the GRIK2 variants are likely pathogenic. Analogous mutations introduced into recombinant GluK2 KAR subunits at sites within the M3 transmembrane domain (encoding p.Ala657Thr, p.Thr660Lys, and p.Thr660Arg) and the M3-S2 linker domain (encoding p.Ile668Thr) had complex effects on functional properties and membrane localization of homomeric and heteromeric KARs. Both p.Thr660Lys and p.Thr660Arg mutant KARs exhibited markedly slowed gating kinetics, similar to p.Ala657Thr-containing receptors. Moreover, we observed emerging genotype-phenotype correlations, including the presence of severe epilepsy in individuals with the p.Thr660Lys variant and hypomyelination in individuals with either the p.Thr660Lys or p.Thr660Arg variant. Collectively, these results demonstrate that human GRIK2 variants predicted to alter channel function are causative for early childhood development disorders and further emphasize the importance of clarifying the role of KARs in early nervous system development.


Asunto(s)
Encéfalo/metabolismo , Discapacidades del Desarrollo/genética , Epilepsia/genética , Discapacidad Intelectual/genética , Mutación , Receptores de Ácido Kaínico/genética , Adolescente , Adulto , Alelos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Niño , Preescolar , Discapacidades del Desarrollo/diagnóstico por imagen , Discapacidades del Desarrollo/metabolismo , Discapacidades del Desarrollo/patología , Epilepsia/diagnóstico por imagen , Epilepsia/metabolismo , Epilepsia/patología , Potenciales Evocados/fisiología , Regulación del Desarrollo de la Expresión Génica , Estudios de Asociación Genética , Heterocigoto , Homocigoto , Humanos , Discapacidad Intelectual/diagnóstico por imagen , Discapacidad Intelectual/metabolismo , Discapacidad Intelectual/patología , Activación del Canal Iónico , Masculino , Modelos Moleculares , Neuronas/metabolismo , Neuronas/patología , Conformación Proteica , Receptores de Ácido Kaínico/química , Receptores de Ácido Kaínico/metabolismo , Receptor de Ácido Kaínico GluK2
18.
Mod Pathol ; 37(7): 100509, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38704030

RESUMEN

Acute promyelocytic leukemia (APL) with variant RARA translocation is linked to over 15 partner genes. Recent publications encompassing 6 cases have expanded the spectrum of RARA partners to torque teno mini virus (TTMV). This entity is likely underrecognized due to the lack of clinician and pathologist familiarity, inability to detect the fusion using routine testing modalities, and informatic challenges in its recognition within next-generation sequencing (NGS) data. We describe a clinicopathologic approach and provide the necessary tools to screen and diagnose APL with TTMV::RARA using existing clinical DNA- or RNA-based NGS assays, which led to the identification of 4 cases, all without other known cytogenetic/molecular drivers. One was identified prospectively and 3 retrospectively, including 2 from custom automated screening of multiple data sets (50,257 cases of hematopoietic malignancy, including 4809 acute myeloid leukemia/myeloid sarcoma/APL cases). Two cases presented as myeloid sarcoma, including 1 with multiple relapses after acute myeloid leukemia-type chemotherapy and hematopoietic stem cell transplant. Two cases presented as leukemia, had a poor response to induction chemotherapy, but achieved remission upon reinduction (including all-trans retinoic acid in 1 case) and subsequent hematopoietic stem cell transplant. Neoplastic cells demonstrated features of APL including frequent azurophilic granules and dim/absent CD34 and HLA-DR expression. RARA rearrangement was not detected by karyotype or fluorescent in situ hybridization. Custom analysis of NGS fusion panel data identified TTMV::RARA rearrangements and, in the prospectively identified case, facilitated monitoring in sequential bone marrow samples. APL with TTMV::RARA is a rare leukemia with a high rate of treatment failure in described cases. The diagnosis should be considered in leukemias with features of APL that lack detectable RARA fusions and other drivers, and may be confirmed by appropriate NGS tests with custom informatics. Incorporation of all-trans retinoic acid may have a role in treatment but requires accurate recognition of the fusion for appropriate classification as APL.

19.
Blood ; 140(12): 1419-1430, 2022 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-35776905

RESUMEN

von Willebrand factor (VWF) is an adhesive glycoprotein that circulates in the blood as disulfide-linked concatemers and functions in primary hemostasis. The loss of long VWF concatemers is associated with the excessive bleeding of type 2A von Willebrand disease (VWD). Formation of the disulfide bonds that concatemerize VWF requires VWF to self-associate into helical tubules, yet how the helical tubules template intermolecular disulfide bonds is not known. Here, we report electron cryomicroscopy (cryo-EM) structures of VWF tubules before and after intermolecular disulfide bond formation. The structures provide evidence that VWF tubulates through a charge-neutralization mechanism and that the A1 domain enhances tubule length by crosslinking successive helical turns. In addition, the structures reveal disulfide states before and after disulfide bond-mediated concatemerization. The structures and proposed assembly mechanism provide a foundation to rationalize VWD-causing mutations.


Asunto(s)
Enfermedad de von Willebrand Tipo 2 , Enfermedades de von Willebrand , Factor de von Willebrand , Disulfuros/química , Humanos , Mutación , Dominios Proteicos , Enfermedad de von Willebrand Tipo 2/genética , Enfermedades de von Willebrand/genética , Factor de von Willebrand/genética
20.
Phys Rev Lett ; 132(20): 206602, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38829061

RESUMEN

We develop a practical machine learning approach to determine the disorder landscape of Majorana nanowires by using training of the conductance matrix and inverting the conductance data in order to obtain the disorder details in the system. The inversion carried out through machine learning using different disorder parametrizations turns out to be unique in the sense that any input tunnel conductance as a function of chemical potential and Zeeman energy can indeed be inverted to provide the correct disorder landscape. Our work opens up a qualitatively new direction of directly determining the topological invariant and the Majorana wave-function structure corresponding to a transport profile of a device using simulations that quantitatively match the specific conductance profile. In addition, this also opens up the possibility for optimizing Majorana systems by figuring out the (generally unknown) underlying disorder only through the conductance data. An accurate estimate of the applicable spin-orbit coupling in the system can also be obtained within the same scheme.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA