Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Asunto principal
Tipo del documento
Intervalo de año de publicación
1.
Physiol Plant ; 175(6): e14098, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38148190

RESUMEN

Natural selection for plant species in heterogeneous environments creates genetic variation for traits such as cold tolerance. While physiological or molecular analyses have been used to evaluate stress tolerance adaptations, combining these approaches may provide deeper insight. Acacia koa (koa) occurs from sea level to 2300 m in Hawai'i, USA. At high elevations, natural koa populations have declined due to deforestation, and freeze tolerance is a limiting factor for tree regeneration. We used physiology and molecular analyses to evaluate cold tolerance of koa populations from low (300-750 m), middle (750-1500 m), and high elevations (1500-2100 m). Half of the seedlings were cold acclimated by exposure to progressively lowered air temperatures for eight weeks (from 25.6/22.2°C to 8/4°C, day/night). Using the whole plant physiology-freezing test and koa C-repeat Binding Factor CBF genes, our results indicated that koa can be cold-acclimated when exposed to low, non-freezing temperatures. Seedlings from high elevations had consistently higher expression of Koa CBF genes associated with cold tolerance, helping to explain variation in cold-hardy phenotypes. Evaluation of the genetic background of 22 koa families across the elevations with low coverage RNA sequencing indicated that high elevation koa had relatively low values of heterozygosity, suggesting that adaptation is more likely to arise in the middle and low elevation sources. This physiology and molecular data for cold tolerance of koa across the elevation gradient of the Hawaiian Islands provides insights into natural selection processes and may help to support guidelines for conservation and seed transfer in forest restoration efforts.


Asunto(s)
Acacia , Humanos , Congelación , Acacia/genética , Frío , Temperatura , Aclimatación/genética , Genómica , Regulación de la Expresión Génica de las Plantas
2.
Sci Rep ; 14(1): 13468, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38867064

RESUMEN

Sewage sludge (SS) application to forest plantation soils as a fertilizer and/or soil amendment is increasingly adopted in plantation forest management. However, the potential risks of SS-derived heavy metals (HMs) remain a concern. Many factors, including woodland slope may affect the risks, but the understanding of this issue is limited. This research evaluated the HMs migration via surface runoff, interflow, and sediments when SS was applied in woodlands of varying slopes. We conducted indoor rainfall simulations and natural rainfall experiments to clarify the effect of slope on the migration of HMs via runoff (including surface and interflow) and sediments. In the simulated rainfall experiment, HMs lost via sediments increased by 9.79-27.28% when the slope increased from 5° to 25°. However, in the natural rainfall experiment, when the slope of forested land increased from 7° to 23°, HMs lost via surface runoff increased by 2.38% to 6.13%. These results indciate that the surface runoff water on a high slope (25°) posed high water quality pollution risks. The migration of HMs via surface runoff water or interflow increased as the steepness of the slope increased. The total migration of Cu, Zn, Pb, Ni, Cr and Cd via sediment greatly exceeded that via surface runoff and interflow. Particles ≤ 0.05 mm contributed the most to the ecological risks posed by sediments. Cd was the main source of potential ecological risks in sediments under both experimental conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA