Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 111(25): 9103-8, 2014 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-24927529

RESUMEN

Transcription factor II D (TFIID) is a multiprotein complex that nucleates formation of the basal transcription machinery. TATA binding protein-associated factors 1 and 7 (TAF1 and TAF7), two subunits of TFIID, are integral to the regulation of eukaryotic transcription initiation and play key roles in preinitiation complex (PIC) assembly. Current models suggest that TAF7 acts as a dissociable inhibitor of TAF1 histone acetyltransferase activity and that this event ensures appropriate assembly of the RNA polymerase II-mediated PIC before transcriptional initiation. Here, we report the 3D structure of a complex of yeast TAF1 with TAF7 at 2.9 Å resolution. The structure displays novel architecture and is characterized by a large predominantly hydrophobic heterodimer interface and extensive cofolding of TAF subunits. There are no obvious similarities between TAF1 and known histone acetyltransferases. Instead, the surface of the TAF1-TAF7 complex contains two prominent conserved surface pockets, one of which binds selectively to an inhibitory trimethylated histone H3 mark on Lys27 in a manner that is also regulated by phosphorylation at the neighboring H3 serine. Our findings could point toward novel roles for the TAF1-TAF7 complex in regulation of PIC assembly via reading epigenetic histone marks.


Asunto(s)
Histona Acetiltransferasas/química , Complejos Multiproteicos/química , Factores Asociados con la Proteína de Unión a TATA/química , Factor de Transcripción TFIID/química , Sitios de Unión , Histonas/química , Humanos , Unión Proteica , Estructura Cuaternaria de Proteína
2.
Mol Cell Biol ; 27(5): 1844-58, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17210644

RESUMEN

The core promoter is a critical DNA element required for accurate transcription and regulation of transcription. Several core promoter elements have been previously identified in eukaryotes, but those cannot account for transcription from most RNA polymerase II-transcribed genes. Additional, as-yet-unidentified core promoter elements must be present in eukaryotic genomes. From extensive analyses of the hepatitis B virus X gene promoter, here we identify a new core promoter element, XCPE1 (the X gene core promoter element 1), that drives RNA polymerase II transcription. XCPE1 is located between nucleotides -8 and +2 relative to the transcriptional start site (+1) and has a consensus sequence of G/A/T-G/C-G-T/C-G-G-G/A-A-G/C(+1)-A/C. XCPE1 shows fairly weak transcriptional activity alone but exerts significant, specific promoter activity when accompanied by activator-binding sites. XCPE1 is also found in the core promoter regions of about 1% of human genes, particularly in poorly characterized TATA-less genes. Our in vitro transcription studies suggest that the XCPE1-driven transcription can be highly active in the absence of TFIID because it can utilize either free TBP or the complete TFIID complex. Our findings suggest the possibility of the existence of a TAF1 (TFIID)-independent transcriptional initiation mechanism that may be used by a category of TATA-less promoters in higher eukaryotes.


Asunto(s)
Regiones Promotoras Genéticas , ARN Polimerasa II/metabolismo , Proteína de Unión a TATA-Box/metabolismo , Factor de Transcripción TFIID/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Secuencia de Bases , Sitios de Unión , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Secuencia de Consenso , Células HeLa , Humanos , Neoplasias Hepáticas/patología , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Plásmidos , Unión Proteica , ARN Mensajero/análisis , Moldes Genéticos , Factores de Transcripción/genética , Factores de Transcripción/aislamiento & purificación
3.
PLoS One ; 4(4): e5103, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19337366

RESUMEN

BACKGROUND: More than 80% of mammalian protein-coding genes are driven by TATA-less promoters which often show multiple transcriptional start sites (TSSs). However, little is known about the core promoter DNA sequences or mechanisms of transcriptional initiation for this class of promoters. METHODOLOGY/PRINCIPAL FINDINGS: Here we identify a new core promoter element XCPE2 (X core promoter element 2) (consensus sequence: A/C/G-C-C/T-C-G/A-T-T-G/A-C-C/A(+1)-C/T) that can direct specific transcription from the second TSS of hepatitis B virus X gene mRNA. XCPE2 sequences can also be found in human promoter regions and typically appear to drive one of the start sites within multiple TSS-containing TATA-less promoters. To gain insight into mechanisms of transcriptional initiation from this class of promoters, we examined requirements of several general transcription factors by in vitro transcription experiments using immunodepleted nuclear extracts and purified factors. Our results show that XCPE2-driven transcription uses at least TFIIB, either TFIID or free TBP, RNA polymerase II (RNA pol II) and the MED26-containing mediator complex but not Gcn5. Therefore, XCPE2-driven transcription can be carried out by a mechanism which differs from previously described TAF-dependent mechanisms for initiator (Inr)- or downstream promoter element (DPE)-containing promoters, the TBP- and SAGA (Spt-Ada-Gcn5-acetyltransferase)-dependent mechanism for yeast TATA-containing promoters, or the TFTC (TBP-free-TAF-containing complex)-dependent mechanism for certain Inr-containing TATA-less promoters. EMSA assays using XCPE2 promoter and purified factors further suggest that XCPE2 promoter recognition requires a set of factors different from those for TATA box, Inr, or DPE promoter recognition. CONCLUSIONS/SIGNIFICANCE: We identified a new core promoter element XCPE2 that are found in multiple TSS-containing TATA-less promoters. Mechanisms of promoter recognition and transcriptional initiation for XCPE2-driven promoters appear different from previously shown mechanisms for classical promoters that show single "focused" TSSs. Our studies provide insight into novel mechanisms of RNA Pol II transcription from multiple TSS-containing TATA-less promoters.


Asunto(s)
Regiones Promotoras Genéticas , TATA Box , Transcripción Genética , Secuencia de Bases , Secuencia de Consenso , ADN , Ensayo de Cambio de Movilidad Electroforética , Genoma Humano , Células HeLa , Humanos , ARN Mensajero/genética , Transactivadores/genética , Proteínas Reguladoras y Accesorias Virales/genética
4.
J Biol Chem ; 284(13): 8621-32, 2009 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-19181665

RESUMEN

Nuclear respiratory factor 1 (NRF-1) is one of the key transcriptional activators for nuclear-coded genes involved in mitochondrial biogenesis and function as well as for many housekeeping genes. A transcriptional co-activator PGC-1 and its related family member PRC have previously been shown to interact with NRF-1 and co-activate NRF-1. We show here that NRF-1 can also directly interact with poly(ADP-ribose) polymerase 1 (PARP-1) and co-purify the PARP-1.DNA-PK.Ku80.Ku70.topoisomerase IIbeta-containing protein complex. Our in vitro binding experiments show that DNA-binding/dimerization domain of NRF-1 and the N-terminal half of PARP-1, which contains two Zinc fingers and the auto-modification domain, are responsible for the interaction, and that this interaction occurs with or without PARP-1 poly(ADP-ribosyl)ation (PARylation). DNA-bound NRF-1 can form a complex with PARP-1, suggesting that NRF-1 can recruit the PARP-1.DNA-PK.Ku80.Ku70.topoisomerase IIbeta-containing protein complex to the promoter. PARP-1 can also PARylate the DNA-binding domain of NRF-1 and negatively regulate NRF-1.PARP-1 interaction. Transient transfection and chromatin immunoprecipitation experiments suggest that PARP-1 plays a role during transcriptional activation by NRF-1. Our finding identifies a new aspect of transcriptional regulation used by NRF-1.


Asunto(s)
Complejos Multiproteicos/metabolismo , Factor Nuclear 1 de Respiración/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Transcripción Genética/fisiología , Animales , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , ADN-Topoisomerasas de Tipo II/genética , ADN-Topoisomerasas de Tipo II/metabolismo , Proteína Quinasa Activada por ADN/genética , Proteína Quinasa Activada por ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células HeLa , Humanos , Autoantígeno Ku , Ratones , Complejos Multiproteicos/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Factor Nuclear 1 de Respiración/genética , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/genética , Regiones Promotoras Genéticas/fisiología , Estructura Terciaria de Proteína/fisiología , Dedos de Zinc/fisiología
5.
J Mol Biol ; 393(2): 397-408, 2009 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-19660470

RESUMEN

FF domains are small protein-protein interaction modules that have two flanking conserved phenylalanine residues. They are present in proteins involved in transcription, RNA splicing, and signal transduction, and often exist in tandem arrays. Although several individual FF domain structures have been determined by NMR, the tandem nature of most FF domains has not been revealed. Here we report the 2.7-A-resolution crystal structure of the first three FF domains of the human transcription elongation factor CA150. Each FF domain is composed of three alpha-helices and a 3(10) helix between alpha-helix 2 and alpha-helix 3. The most striking feature of the structure is that an FF domain is connected to the next by an alpha-helix that continues from helix 3 to helix 1 of the next. The consequent elongated arrangement allows exposure of many charged residues within the region that can be engaged in interaction with other molecules. Binding studies using a peptide ligand suggest that a specific conformation of the FF domains might be required to achieve higher-affinity binding. Additionally, we explore potential DNA binding of the FF construct used in this study. Overall, we provide the first crystal structure of an FF domain and insights into the tandem nature of the FF domains and suggest that, in addition to protein binding, FF domains might be involved in DNA binding.


Asunto(s)
Cristalografía por Rayos X/métodos , Transactivadores/química , Secuencia de Aminoácidos , Sitios de Unión , Simulación por Computador , Humanos , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , Péptidos/metabolismo , Unión Proteica/genética , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Electricidad Estática , Transactivadores/genética , Transactivadores/metabolismo , Transcripción Genética , Factores de Elongación Transcripcional
6.
J Infect Dis ; 197(3): 479-86, 2008 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-18199036

RESUMEN

BACKGROUND: Gliotoxin is a epipolythiodioxopiperazine toxin that is made by the filamentous fungus Aspergillus fumigatus. Gliotoxin has a wide range of effects on metazoan cells in culture, including induction of apoptosis through inhibition of Nf-kappaB, and inhibition of superoxide production by phagocytes. These activities have led to the proposal that gliotoxin contributes to pathogenesis during invasive aspergillosis. We tested this hypothesis by creating isogenic strains of gliotoxin-producing and nonproducing strains. METHODS: We deleted gliP, the gene that encodes the nonribosomal peptide synthetase GliP. GliP catalyzes the first biosynthetic step in the synthesis of gliotoxin. We then tested for gliotoxin production and virulence in different animal models. RESULTS: Deletion of gliP resulted in strains that were wild type for growth, but they did not synthesize gliotoxin. Transformation of gliP deletion mutants with a full copy of gliP restored gliotoxin production. The gliP deletion strain had attenuated virulence in nonneutropenic mice immunosuppressed with corticosteroids, but had normal virulence in neutropenic mice. It also had reduced virulence in a Drosophila melanogaster model. CONCLUSIONS: Gliotoxin only contributes to the virulence of A. fumigatus in nonneutropenic mice and in fruit flies with functional phagocytes. These results suggest that the principal targets of gliotoxin are neutrophils or other phagocytes.


Asunto(s)
Aspergillus fumigatus/fisiología , Aspergillus fumigatus/patogenicidad , Gliotoxina/biosíntesis , Animales , Aspergillus fumigatus/clasificación , Secuencia de Bases , Clonación Molecular , Cartilla de ADN , Drosophila melanogaster/efectos de los fármacos , Eliminación de Gen , Gliotoxina/toxicidad , Datos de Secuencia Molecular , Virulencia
7.
Proc Natl Acad Sci U S A ; 104(4): 1189-94, 2007 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-17227857

RESUMEN

TFIID is an essential factor required for RNA polymerase II transcription but remains poorly understood because of its intrinsic complexity. Human TAF5, a 100-kDa subunit of general transcription factor TFIID, is an essential gene and plays a critical role in assembling the 1.2 MDa TFIID complex. We report here a structural analysis of the TAF5 protein. Our structure at 2.2-A resolution of the TAF5-NTD2 domain reveals an alpha-helical domain with distant structural similarity to RNA polymerase II CTD interacting factors. The TAF5-NTD2 domain contains several conserved clefts likely to be critical for TFIID complex assembly. Our biochemical analysis of the human TAF5 protein demonstrates the ability of the N-terminal half of the TAF5 gene to form a flexible, extended dimer, a key property required for the assembly of the TFIID complex.


Asunto(s)
Factores Asociados con la Proteína de Unión a TATA/química , Factor de Transcripción TFIID/química , Cristalografía por Rayos X , Dimerización , Humanos , Modelos Moleculares , Conformación Proteica
8.
Proc Natl Acad Sci U S A ; 104(19): 7839-44, 2007 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-17483474

RESUMEN

TBP-associated factor 4 (TAF4), an essential subunit of the TFIID complex acts as a coactivator for multiple transcriptional regulators, including Sp1 and CREB. However, little is known regarding the structural properties of the TAF4 subunit that lead to the coactivator function. Here, we report the crystal structure at 2.0-A resolution of the human TAF4-TAFH domain, a conserved domain among all metazoan TAF4, TAF4b, and ETO family members. The hTAF4-TAFH structure adopts a completely helical fold with a large hydrophobic groove that forms a binding surface for TAF4 interacting factors. Using peptide phage display, we have characterized the binding preference of the hTAF4-TAFH domain for a hydrophobic motif, DPsiPsizetazetaPsiPhi, that is present in a number of nuclear factors, including several important transcriptional regulators with roles in activating, repressing, and modulating posttranslational modifications. A comparison of the hTAF4-TAFH structure with the homologous ETO-TAFH domain reveals several critical residues important for hTAF4-TAFH target specificity and suggests that TAF4 has evolved in response to the increased transcriptional complexity of metazoans.


Asunto(s)
Factores Asociados con la Proteína de Unión a TATA/química , Factor de Transcripción TFIID/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/química , Sitios de Unión , Secuencia Conservada , Cristalografía por Rayos X , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/química , Humanos , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Factores Asociados con la Proteína de Unión a TATA/fisiología , Factor de Transcripción TFIID/fisiología
9.
J Virol ; 81(22): 12272-84, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17804496

RESUMEN

Rotavirus, the major pathogen of infantile gastroenteritis, carries a nonstructural protein, NSP2, essential for viroplasm formation and genome replication/packaging. In addition to RNA-binding and helix-destabilizing properties, NSP2 exhibits nucleoside triphosphatase activity. A conserved histidine (H225) functions as the catalytic residue for this enzymatic activity, and mutation of this residue abrogates genomic double-stranded RNA synthesis without affecting viroplasm formation. To understand the structural basis of the phosphatase activity of NSP2, we performed crystallographic analyses of native NSP2 and a functionally defective H225A mutant in the presence of nucleotides. These studies showed that nucleotides bind inside a cleft between the two domains of NSP2 in a region that exhibits structural similarity to ubiquitous cellular HIT (histidine triad) proteins. Only minor conformational alterations were observed in the cleft upon nucleotide binding and hydrolysis. This hydrolysis involved the formation of a stable phosphohistidine intermediate. These observations, reminiscent of cellular nucleoside diphosphate (NDP) kinases, prompted us to investigate whether NSP2 exhibits phosphoryl-transfer activity. Bioluminometric assay showed that NSP2 exhibits an NDP kinase-like activity that transfers the bound phosphate to NDPs. However, NSP2 is distinct from the highly conserved cellular NDP kinases in both its structure and catalytic mechanism, thus making NSP2 a potential target for antiviral drug design. With structural similarities to HIT proteins, which are not known to exhibit NDP kinase activity, NSP2 represents a unique example among structure-activity relationships. The newly observed phosphoryl-transfer activity of NSP2 may be utilized for homeostasis of nucleotide pools in viroplasms during genome replication.


Asunto(s)
Nucleósido-Difosfato Quinasa/química , Nucleótidos/química , Proteínas de Unión al ARN/química , Proteínas no Estructurales Virales/química , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Catálisis , Dominio Catalítico , Humanos , Cinética , Datos de Secuencia Molecular , Nucleósido-Difosfato Quinasa/genética , Nucleósido-Difosfato Quinasa/fisiología , Fosforilación , Conformación Proteica , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/fisiología , Rotavirus/enzimología , Rotavirus/fisiología , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/fisiología , Replicación Viral
10.
Nat Struct Biol ; 10(8): 622-8, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12872159

RESUMEN

The C-terminal binding protein 1 (CtBP) is a ubiquitous corepressor linking the recruitment of DNA- and histone-modifying proteins to sequence-specific DNA-binding proteins and facilitating gene regulation during development and oncogenesis. We describe here the binding, phosphorylation and functional regulation of CtBP by the p21-activated kinase 1 (Pak1). Pak1 phosphorylates CtBP selectively on Ser158 within a putative regulatory loop, triggering CtBP cellular redistribution and blocking CtBP corepressor functions. A S158A substitution in CtBP or Pak1 knockdown by short interference RNA blocked CtBP phosphorylation, redistribution and attenuation of CtBP corepressor functions in reporter and chromatin assays. In the presence of NADH, Pak1 superphosphorylates CtBP and inhibits CtBP dehydrogenase activity, suggesting that preferential phosphorylation of active CtBP may alter secondary structures and influence both enzymatic and corepressor functions. Pak1 regulation of CtBP represents a new model of corepressor regulation whereby cellular signaling cascades may influence gene expression in mammalian cells.


Asunto(s)
Proteínas de Unión al ADN/antagonistas & inhibidores , Fosfoproteínas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Represoras/antagonistas & inhibidores , Oxidorreductasas de Alcohol , Sustitución de Aminoácidos , Sitios de Unión , Línea Celular Tumoral , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Femenino , Humanos , Técnicas In Vitro , Fosfoproteínas/química , Fosfoproteínas/genética , Fosforilación , Unión Proteica , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras/química , Proteínas Represoras/genética , Serina/química , Transducción de Señal , Técnicas del Sistema de Dos Híbridos , Quinasas p21 Activadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA