Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Physiol Lung Cell Mol Physiol ; 325(1): L66-L73, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37280517

RESUMEN

Children born to obese mothers are prone to develop asthma and airway hyperresponsiveness, but the mechanisms behind this are unclear. Here we developed a mouse model of maternal diet-induced obesity that recapitulates metabolic abnormalities seen in humans born to obese mothers. Offspring of dams fed a high-fat diet (HFD) showed increased adiposity, hyperinsulinemia, and insulin resistance at 16 wk of age despite being fed only a regular diet (RD). Bronchoconstriction induced by inhaled 5-hydroxytriptamine was also significantly increased in offspring of HFD-fed versus RD-fed dams. Increased bronchoconstriction was blocked by vagotomy, indicating this reflex was mediated by airway nerves. Three-dimensional (3-D) confocal imaging of tracheas collected from 16-wk-old offspring showed that both epithelial sensory innervation and substance P expression were increased in the offspring of HFD-fed dams compared with offspring of RD-fed dams. For the first time, we show that maternal high-fat diet increases airway sensory innervation in offspring, leading to reflex airway hyperresponsiveness.NEW & NOTEWORTHY Our study reveals a novel potential mechanism, by which maternal high-fat diet increases the risk and severity of asthma in offspring. We found that exposure to maternal high-fat diet in mice leads to hyperinnervation of airway sensory nerves and increased reflex bronchoconstriction in offspring fed a regular diet only. These findings have important clinical implications and provide new insights into the pathophysiology of asthma, highlighting the need for preventive strategies in this patient population.


Asunto(s)
Asma , Efectos Tardíos de la Exposición Prenatal , Hipersensibilidad Respiratoria , Humanos , Femenino , Niño , Animales , Ratones , Dieta Alta en Grasa/efectos adversos , Hijos Adultos , Broncoconstricción , Obesidad , Reflejo , Asma/etiología
2.
Am J Physiol Lung Cell Mol Physiol ; 325(6): L776-L787, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37814791

RESUMEN

Asthma susceptibility is influenced by environmental, genetic, and epigenetic factors. DNA methylation is one form of epigenetic modification that regulates gene expression and is both inherited and modified by environmental exposures throughout life. Prenatal development is a particularly vulnerable time period during which exposure to maternal asthma increases asthma risk in offspring. How maternal asthma affects DNA methylation in offspring and what the consequences of differential methylation are in subsequent generations are not fully known. In this study, we tested the effects of grandmaternal house dust mite (HDM) allergen sensitization during pregnancy on airway physiology and inflammation in HDM-sensitized and challenged second-generation mice. We also tested the effects of grandmaternal HDM sensitization on tissue-specific DNA methylation in allergen-naïve and -sensitized second-generation mice. Descendants of both allergen- and vehicle-exposed grandmaternal founders exhibited airway hyperreactivity after HDM sensitization. However, grandmaternal allergen sensitization significantly potentiated airway hyperreactivity and altered the epigenomic trajectory in second-generation offspring after HDM sensitization compared with HDM-sensitized offspring from vehicle-exposed founders. As a result, biological processes and signaling pathways associated with epigenetic modifications were distinct between lineages. A targeted analysis of pathway-associated gene expression found that Smad3 was significantly dysregulated as a result of grandmaternal allergen sensitization. These data show that grandmaternal allergen exposure during pregnancy establishes a unique epigenetic trajectory that reprograms allergen responses in second-generation offspring and may contribute to asthma risk.NEW & NOTEWORTHY Asthma susceptibility is influenced by environmental, genetic, and epigenetic factors. This study shows that maternal allergen exposure during pregnancy promotes unique epigenetic trajectories in second-generation offspring at baseline and in response to allergen sensitization, which is associated with the potentiation of airway hyperreactivity. These effects are one mechanism by which maternal asthma may influence the inheritance of asthma risk.


Asunto(s)
Asma , Efectos Tardíos de la Exposición Prenatal , Embarazo , Humanos , Femenino , Ratones , Animales , Alérgenos , Epigenómica , Efectos Tardíos de la Exposición Prenatal/genética , Asma/genética , Susceptibilidad a Enfermedades , Epigénesis Genética , Pyroglyphidae
3.
Am J Respir Cell Mol Biol ; 67(1): 89-98, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35363997

RESUMEN

Asthma is a heterogeneous inflammatory airway disease that develops in response to a combination of genetic predisposition and environmental exposures. Patients with asthma are grouped into phenotypes with shared clinical features and biomarker profiles to help tailor specific therapies. However, factors driving development of specific phenotypes are poorly understood. Prenatal exposure to maternal asthma is a unique risk factor for childhood asthma. Here we tested whether maternal asthma skews asthma phenotypes in offspring. We compared airway hyperreactivity and inflammatory and neurotrophin lung signatures before and after allergen challenge in offspring born to mice exposed to house dust mite (HDM) or vehicle during pregnancy. Maternal HDM exposure potentiated offspring responses to HDM allergen, significantly increasing both airway hyperreactivity and airway eosinophilia compared with control mice. Maternal HDM exposure broadly skewed the offspring cytokine response from a classic allergen-induced T-helper cell type 2 (Th2)-predominant signature in HDM-treated offspring of vehicle-exposed mothers, toward a mixed Th17/Th1 phenotype in HDM-treated offspring of HDM-exposed mothers. Morphologic analysis determined that maternal HDM exposure also increased airway epithelial sensory nerve density and induced distinct neurotrophin signatures to support airway hyperinnervation. Our results demonstrate that maternal allergen exposure alters fetal lung development and promotes a unique inflammatory phenotype at baseline and in response to allergen that persists into adulthood.


Asunto(s)
Asma , Pyroglyphidae , Alérgenos , Animales , Asma/genética , Modelos Animales de Enfermedad , Femenino , Pulmón , Ratones , Factores de Crecimiento Nervioso/genética , Fenotipo , Embarazo
4.
Am J Respir Crit Care Med ; 203(3): 348-355, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-32809840

RESUMEN

Rationale: Chronic cough is characterized by frequent urges to cough and a heightened sensitivity to inhaled irritants. Airway sensory nerves trigger cough. We hypothesized that sensory nerve density is increased in chronic cough, which may contribute to excessive and persistent coughing.Objectives: To measure airway nerve density (axonal length) and complexity (nerve branching, neuropeptide expression) in humans with and without chronic cough.Methods: Bronchoscopic human airway biopsies were immunolabeled for nerves and the sensory neuropeptide substance P. Eosinophil peroxidase was also quantified given previous reports showing associations between eosinophils and nerve density. Three-dimensional image z-stacks of epithelium and subepithelium were generated using confocal microscopy, and from these z-stacks, total nerve length, the number of nerve branch points, substance P expression, and eosinophil peroxidase were quantified within each airway compartment.Measurements and Main Results: Nerve length and the number of branch points were significantly increased in epithelium, but not subepithelium, in chronic cough compared with healthy airways. Substance P expression was scarce and was similar in chronic cough and healthy airways. Nerve length and branching were not associated with eosinophil peroxidase nor with demographics such as age and sex in either group.Conclusions: Airway epithelial sensory nerve density is increased in chronic cough, suggesting sensory neuroplasticity contributes to cough hypersensitivity.


Asunto(s)
Broncoscopía/métodos , Tos/diagnóstico , Tos/fisiopatología , Sistema Respiratorio/diagnóstico por imagen , Sistema Respiratorio/fisiopatología , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/fisiología , Adulto , Anciano , Enfermedad Crónica , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
5.
Am J Physiol Lung Cell Mol Physiol ; 321(1): L236-L247, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34009030

RESUMEN

Obesity-related asthma often presents with more severe symptoms than non-obesity-related asthma and responds poorly to current treatments. Both insulin resistance and hyperinsulinemia are common in obesity. We have shown that increased insulin mediates airway hyperreactivity in diet-induced obese rats by causing neuronal M2 muscarinic receptor dysfunction, which normally inhibits acetylcholine release from parasympathetic nerves. Decreasing insulin with streptozotocin prevented airway hyperreactivity and M2 receptor dysfunction. The objective of the present study was to investigate whether pioglitazone, a hypoglycemic drug, prevents airway hyperreactivity and M2 receptor dysfunction in obese rats. Male rats fed a low- or high-fat diet were treated with pioglitazone or PBS by daily gavage. Body weight, body fat, fasting insulin, and bronchoconstriction and bradycardia in response to electrical stimulation of vagus nerves and to aerosolized methacholine were recorded. Pilocarpine, a muscarinic receptor agonist, was used to measure M2 receptor function. Rats on a high-fat diet had potentiated airway responsiveness to vagal stimulation and dysfunctional neuronal M2 receptors, whereas airway responsiveness to methacholine was unaffected. Pioglitazone reduced fasting insulin and prevented airway hyperresponsiveness and M2 receptor dysfunction but did not change inflammatory cytokine mRNA expression in alveolar macrophages. High-fat diet, with and without pioglitazone, had tissue-specific effects on insulin receptor mRNA expression. In conclusion, pioglitazone prevents vagally mediated airway hyperreactivity and protects neuronal M2 muscarinic receptor function in obese rats.


Asunto(s)
Hiperreactividad Bronquial/tratamiento farmacológico , Hiperinsulinismo/tratamiento farmacológico , Insulina/metabolismo , Neuronas/efectos de los fármacos , Obesidad/complicaciones , Pioglitazona/farmacología , Receptor Muscarínico M2/metabolismo , Animales , Hiperreactividad Bronquial/etiología , Hiperreactividad Bronquial/metabolismo , Hiperreactividad Bronquial/patología , Dieta Alta en Grasa/efectos adversos , Hiperinsulinismo/etiología , Hiperinsulinismo/metabolismo , Hiperinsulinismo/patología , Hipoglucemiantes/farmacología , Masculino , Neuronas/metabolismo , Neuronas/patología , Ratas , Ratas Sprague-Dawley , Receptor Muscarínico M2/genética
6.
Am J Physiol Lung Cell Mol Physiol ; 321(6): L1105-L1118, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34668415

RESUMEN

Increased insulin is associated with obesity-related airway hyperreactivity and asthma. We tested whether the use of metformin, an antidiabetic drug used to reduce insulin resistance, can reduce circulating insulin, thereby preventing airway hyperreactivity in rats with dietary obesity. Male and female rats were fed a high- or low-fat diet for 5 wk. Some male rats were simultaneously treated with metformin (100 mg/kg orally). In separate experiments, after 5 wk of a high-fat diet, some rats were switched to a low-fat diet, whereas others continued a high-fat diet for an additional 5 wk. Bronchoconstriction and bradycardia in response to bilateral electrical vagus nerve stimulation or to inhaled methacholine were measured in anesthetized and vagotomized rats. Body weight, body fat, caloric intake, fasting glucose, and insulin were measured. Vagally induced bronchoconstriction was potentiated only in male rats on a high-fat diet. Males gained more body weight, body fat, and had increased levels of fasting insulin compared with females. Metformin prevented development of vagally induced airway hyperreactivity in male rats on high-fat diet, in addition to inhibiting weight gain, fat gain, and increased insulin. In contrast, switching rats to a low-fat diet for 5 wk reduced body weight and body fat, but it did not reverse fasting glucose, fasting insulin, or potentiation of vagally induced airway hyperreactivity. These data suggest that medications that target insulin may be effective treatment for obesity-related asthma.


Asunto(s)
Asma/tratamiento farmacológico , Hiperreactividad Bronquial/tratamiento farmacológico , Broncoconstricción , Dieta Alta en Grasa/efectos adversos , Hiperinsulinismo/prevención & control , Metformina/farmacología , Obesidad/complicaciones , Animales , Asma/inducido químicamente , Asma/metabolismo , Asma/patología , Hiperreactividad Bronquial/inducido químicamente , Hiperreactividad Bronquial/metabolismo , Hiperreactividad Bronquial/patología , Broncoconstrictores/toxicidad , Femenino , Glucosa/metabolismo , Hiperinsulinismo/etiología , Hiperinsulinismo/metabolismo , Hiperinsulinismo/patología , Hipoglucemiantes/farmacología , Masculino , Cloruro de Metacolina/toxicidad , Ratas , Ratas Sprague-Dawley , Nervio Vago/efectos de los fármacos , Aumento de Peso
7.
J Neuroinflammation ; 18(1): 209, 2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34530852

RESUMEN

BACKGROUND: Toll-like receptor 7 (TLR7) is an innate immune receptor that detects viral single-stranded RNA and triggers the production of proinflammatory cytokines and type 1 interferons in immune cells. TLR7 agonists also modulate sensory nerve function by increasing neuronal excitability, although studies are conflicting whether sensory neurons specifically express TLR7. This uncertainty has confounded the development of a mechanistic understanding of TLR7 function in nervous tissues. METHODS: TLR7 expression was tested using in situ hybridization with species-specific RNA probes in vagal and dorsal root sensory ganglia in wild-type and TLR7 knockout (KO) mice and in guinea pigs. Since TLR7 KO mice were generated by inserting an Escherichia coli lacZ gene in exon 3 of the mouse TLR7 gene, wild-type and TLR7 (KO) mouse vagal ganglia were also labeled for lacZ. In situ labeling was compared to immunohistochemistry using TLR7 antibody probes. The effects of influenza A infection on TLR7 expression in sensory ganglia and in the spleen were also assessed. RESULTS: In situ probes detected TLR7 in the spleen and in small support cells adjacent to sensory neurons in the dorsal root and vagal ganglia in wild-type mice and guinea pigs, but not in TLR7 KO mice. TLR7 was co-expressed with the macrophage marker Iba1 and the satellite glial cell marker GFAP, but not with the neuronal marker PGP9.5, indicating that TLR7 is not expressed by sensory nerves in either vagal or dorsal root ganglia in mice or guinea pigs. In contrast, TLR7 antibodies labeled small- and medium-sized neurons in wild-type and TLR7 KO mice in a TLR7-independent manner. Influenza A infection caused significant weight loss and upregulation of TLR7 in the spleens, but not in vagal ganglia, in mice. CONCLUSION: TLR7 is expressed by macrophages and satellite glial cells, but not neurons in sensory ganglia suggesting TLR7's neuromodulatory effects are mediated indirectly via activation of neuronally-associated support cells, not through activation of neurons directly. Our data also suggest TLR7's primary role in neuronal tissues is not related to antiviral immunity.


Asunto(s)
Ganglios Espinales/metabolismo , Macrófagos/metabolismo , Glicoproteínas de Membrana/biosíntesis , Neuroglía/metabolismo , Células Receptoras Sensoriales/metabolismo , Receptor Toll-Like 7/biosíntesis , Animales , Femenino , Ganglios Espinales/ultraestructura , Expresión Génica , Cobayas , Macrófagos/ultraestructura , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuroglía/ultraestructura , Células Receptoras Sensoriales/ultraestructura , Receptor Toll-Like 7/genética
8.
Am J Respir Cell Mol Biol ; 62(4): 493-502, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31821769

RESUMEN

Asthma is characterized by airway hyperreactivity and inflammation. In the lungs, parasympathetic and sensory nerves control airway tone and induce bronchoconstriction. Dysregulation of these nerves results in airway hyperreactivity. Humans with eosinophilic asthma have significantly increased sensory nerve density in airway epithelium, suggesting that type 2 cytokines and inflammatory cells promote nerve growth. Similarly, mice with congenital airway eosinophilia also have airway hyperreactivity and increased airway sensory nerve density. Here, we tested whether this occurs during development. We show that transgenic mice that overexpress IL-5, a cytokine required for eosinophil hematopoiesis, give birth to wild-type offspring that have significantly increased airway epithelial nerve density and airway hyperreactivity that persists into adulthood. These effects are caused by in utero exposure to maternal IL-5 and resulting fetal eosinophilia. Allergen exposure of these adult wild-type offspring results in severe airway hyperreactivity, leading to fatal reflex bronchoconstriction. Our results demonstrate that fetal exposure to IL-5 is a developmental origin of airway hyperreactivity, mediated by hyperinnervation of airway epithelium.


Asunto(s)
Interleucina-5/metabolismo , Pulmón/inervación , Pulmón/metabolismo , Nervio Vago/metabolismo , Nervio Vago/fisiología , Animales , Asma/metabolismo , Asma/fisiopatología , Hiperreactividad Bronquial/metabolismo , Hiperreactividad Bronquial/fisiopatología , Líquido del Lavado Bronquioalveolar , Broncoconstricción/fisiología , Eosinófilos/metabolismo , Eosinófilos/fisiología , Femenino , Inflamación/metabolismo , Inflamación/fisiopatología , Pulmón/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Eosinofilia Pulmonar/metabolismo , Eosinofilia Pulmonar/fisiopatología , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/fisiología
9.
Am J Respir Cell Mol Biol ; 62(4): 423-429, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31899655

RESUMEN

Dysregulation of airway nerves leads to airway hyperreactivity, a hallmark of asthma. Although changes to nerve density and phenotype have been described in asthma, the relevance of these changes to nerve function has not been investigated due to anatomical limitations where afferent and efferent nerves run in the same nerve trunk, making it difficult to assess their independent contributions. We developed a unique and accessible system to activate specific airway nerves to investigate their function in mouse models of airway disease. We describe a method to specifically activate cholinergic neurons using light, resulting in immediate, measurable increases in airway inflation pressure and decreases in heart rate. Expression of light-activated channelrhodopsin 2 in these neurons is governed by Cre expression under the endogenous choline acetyltransferase promoter, and we describe a method to decrease variability in channelrhodopsin expression in future experiments. Optogenetic activation of specific subsets of airway neurons will be useful for studying the functional relevance of other observed changes, such as changes to nerve morphology and protein expression, across many airway diseases, and may be used to study the function of subpopulations of autonomic neurons in lungs and other organs.


Asunto(s)
Neuronas Colinérgicas/fisiología , Pulmón/fisiología , Animales , Asma/genética , Asma/patología , Línea Celular , Channelrhodopsins/genética , Colina O-Acetiltransferasa/genética , Ratones , Ratones Endogámicos C57BL , Optogenética/métodos , Regiones Promotoras Genéticas/genética , Enfermedades Respiratorias/genética , Enfermedades Respiratorias/patología
10.
Am J Physiol Lung Cell Mol Physiol ; 318(5): L943-L952, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32233794

RESUMEN

Transient receptor potential ankyrin-1 (TRPA1) is a ligand-gated cation channel that responds to endogenous and exogenous irritants. TRPA1 is expressed on multiple cell types throughout the lungs, but previous studies have primarily focused on TRPA1 stimulation of airway sensory nerves. We sought to understand the integrated physiological airway response to TRPA1 stimulation. The TRPA1 agonists allyl isothiocyanate (AITC) and cinnamaldehyde (CINN) were tested in sedated, mechanically ventilated guinea pigs in vivo. Reproducible bronchoconstrictions were induced by electrical stimulation of the vagus nerves. Animals were then treated with intravenous AITC or CINN. AITC and CINN were also tested on isolated guinea pig and mouse tracheas and postmortem human trachealis muscle strips in an organ bath. Tissues were contracted with methacholine, histamine, or potassium chloride and then treated with AITC or CINN. Some airways were pretreated with TRPA1 antagonists, the cyclooxygenase inhibitor indomethacin, the EP2 receptor antagonist PF 04418948, or tetrodotoxin. AITC and CINN blocked vagally mediated bronchoconstriction in guinea pigs. Pretreatment with indomethacin completely abolished the airway response to TRPA1 agonists. Similarly, AITC and CINN dose-dependently relaxed precontracted guinea pig, mouse, and human airways in the organ bath. AITC- and CINN-induced airway relaxation required TRPA1, prostaglandins, and PGE2 receptor activation. TRPA1-induced airway relaxation did not require epithelium or tetrodotoxin-sensitive nerves. Finally, AITC blocked airway hyperreactivity in two animal models of allergic asthma. These data demonstrate that stimulation of TRPA1 causes bronchodilation of intact airways and suggest that the TRPA1 pathway is a potential pharmacological target for bronchodilation.


Asunto(s)
Dinoprostona/metabolismo , Músculo Liso/metabolismo , Canal Catiónico TRPA1/genética , Tráquea/metabolismo , Acroleína/análogos & derivados , Acroleína/farmacología , Animales , Broncoconstricción/efectos de los fármacos , Estimulación Eléctrica , Regulación de la Expresión Génica , Cobayas , Histamina/farmacología , Humanos , Indometacina/farmacología , Isotiocianatos/farmacología , Masculino , Cloruro de Metacolina/farmacología , Ratones , Músculo Liso/efectos de los fármacos , Técnicas de Cultivo de Órganos , Cloruro de Potasio/farmacología , Prostaglandina-Endoperóxido Sintasas/genética , Prostaglandina-Endoperóxido Sintasas/metabolismo , Respiración Artificial , Transducción de Señal , Canal Catiónico TRPA1/agonistas , Canal Catiónico TRPA1/antagonistas & inhibidores , Canal Catiónico TRPA1/metabolismo , Tetrodotoxina/farmacología , Tráquea/efectos de los fármacos , Nervio Vago/fisiología
11.
Am J Physiol Lung Cell Mol Physiol ; 318(2): L242-L251, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31746625

RESUMEN

Eosinophils mediate airway hyperresponsiveness by increasing vagally mediated reflex bronchoconstriction. Here, we tested whether circulating or airway eosinophils change nerve function. Airway resistance in response to aerosolized 5-hydroxytryptamine (5-HT, 10-300 mM) was measured in wild-type mice or transgenic mice that overexpress IL5 in T cells (+IL5T), overexpress IL5 in airway epithelium (+IL5AE), or overexpress IL5 but are devoid of eosinophils (+IL5AE/-Eos). Inflammatory cells in bronchoalveolar lavage (BAL), blood, and bone marrow were quantified. Blood eosinophils were increased in +IL5T and +IL5AE mice compared with wild-type mice. +IL5T mice had increased eosinophils in bone marrow while +IL5AE mice had increased eosinophils in BAL. Eosinophils surrounding large airways were significantly increased only in +IL5AE mice. With intact vagal innervation, aerosolized 5-HT significantly increased airway resistance in +IL5AE mice. 5-HT-induced bronchoconstriction was blocked by vagotomy or atropine, demonstrating that it was mediated via a vagal reflex. Airway resistance was not increased in +IL5AE/-Eos mice, demonstrating that it required lung eosinophils, but was not affected by increased bone marrow or blood eosinophils or by increased IL5 in the absence of eosinophils. Eosinophils did not change M3 function on airway smooth muscle, since airway responses to methacholine in vagotomized mice were not different among strains. Eosinophils surrounding large airways were sufficient, even in the absence of increased IL5 or external insult, to increase vagally mediated reflex bronchoconstriction. Specifically blocking or reducing eosinophils surrounding large airways may effectively inhibit reflex hyperresponsiveness mediated by vagus nerves in eosinophilic asthma.


Asunto(s)
Broncoconstricción , Eosinófilos/patología , Pulmón/patología , Pulmón/fisiopatología , Reflejo , Nervio Vago/patología , Resistencia de las Vías Respiratorias , Animales , Médula Ósea/patología , Lavado Broncoalveolar , Recuento de Células , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones Endogámicos C57BL , Eosinofilia Pulmonar/metabolismo , Eosinofilia Pulmonar/patología , Eosinofilia Pulmonar/fisiopatología , Receptor Muscarínico M3/metabolismo , Hipersensibilidad Respiratoria/fisiopatología , Serotonina , Vagotomía
12.
Am J Respir Cell Mol Biol ; 61(5): 620-630, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30978295

RESUMEN

Epidemiologic studies link organophosphorus pesticides (OPs) to increased incidence of asthma. In guinea pigs, OP-induced airway hyperreactivity requires macrophages and TNF-α. Here, we determined whether OPs interact directly with macrophages to alter cytokine expression or release. Human THP1 cells were differentiated into macrophages and then exposed to parathion, chlorpyrifos, or diazinon, or their oxon, phosphate, or phosphorothioate metabolites for 24 hours in the absence or presence of reagents that block cholinergic receptors. TNF-α, IL-1ß, platelet-derived growth factor, and transforming growth factor-ß mRNA and protein were quantified by qPCR and ELISA, respectively. The effects of OPs on NF-κB, acetylcholinesterase, and intracellular calcium were also measured. Parent OPs and their oxon metabolites upregulated cytokine mRNA and stimulated cytokine release. TNF-α release, which was the most robust response, was triggered by parent, but not oxon, compounds. Cytokine expression was also increased by diethyl dithiophosphate but not diethyl thiophosphate or diethyl phosphate metabolites. Parent OPs, but not oxon metabolites, activated NF-κB. Parent and oxon metabolites decreased acetylcholinesterase activity, but comparable acetylcholinesterase inhibition by eserine did not mimic OP effects on cytokines. Consistent with the noncholinergic mechanisms of OP effects on macrophages, pharmacologic antagonism of muscarinic or nicotinic receptors did not prevent OP-induced cytokine expression or release. These data indicate that phosphorothioate OP compounds directly stimulate macrophages to release TNF-α, potentially via activation of NF-κB, and suggest that therapies that target NF-κB may prevent OP-induced airway hyperreactivity.


Asunto(s)
Hiperreactividad Bronquial/tratamiento farmacológico , Broncoconstricción/efectos de los fármacos , Cloropirifos/farmacología , Insecticidas/farmacología , Asma/inducido químicamente , Asma/tratamiento farmacológico , Hiperreactividad Bronquial/inducido químicamente , Diferenciación Celular/efectos de los fármacos , Citocinas/farmacología , Diazinón/farmacología , Humanos , Compuestos Organofosforados/farmacología , Paratión
14.
Am J Physiol Lung Cell Mol Physiol ; 312(6): L969-L982, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28258108

RESUMEN

Ozone causes vagally mediated airway hyperreactivity and recruits inflammatory cells, including eosinophils, to lungs, where they mediate ozone-induced hyperreactivity 1 day after exposure but are paradoxically protective 3 days later. We aimed to test the role of newly divided eosinophils in ozone-induced airway hyperreactivity in sensitized and nonsensitized guinea pigs. Nonsensitized and sensitized guinea pigs were treated with 5-bromo-2-deoxyuridine (BrdU) to label newly divided cells and were exposed to air or ozone for 4 h. Later (1 or 3 days later), vagally induced bronchoconstriction was measured, and inflammatory cells were harvested from bone marrow, blood, and bronchoalveolar lavage. Ozone induced eosinophil hematopoiesis. One day after ozone, mature eosinophils dominate the inflammatory response and potentiate vagally induced bronchoconstriction. However, by 3 days, newly divided eosinophils have reached the lungs, where they inhibit ozone-induced airway hyperreactivity because depleting them with antibody to IL-5 or a TNF-α antagonist worsened vagally induced bronchoconstriction. In sensitized guinea pigs, both ozone-induced eosinophil hematopoiesis and subsequent recruitment of newly divided eosinophils to lungs 3 days later failed to occur. Thus mature eosinophils dominated the ozone-induced inflammatory response in sensitized guinea pigs. Depleting these mature eosinophils prevented ozone-induced airway hyperreactivity in sensitized animals. Ozone induces eosinophil hematopoiesis and recruitment to lungs, where 3 days later, newly divided eosinophils attenuate vagally mediated hyperreactivity. Ozone-induced hematopoiesis of beneficial eosinophils is blocked by a TNF-α antagonist or by prior sensitization. In these animals, mature eosinophils are associated with hyperreactivity. Thus interventions targeting eosinophils, although beneficial in atopic individuals, may delay resolution of airway hyperreactivity in nonatopic individuals.


Asunto(s)
Hiperreactividad Bronquial/inducido químicamente , Hiperreactividad Bronquial/inmunología , División Celular , Eosinófilos/patología , Inmunización , Animales , Bradicardia/complicaciones , Bradicardia/inmunología , Bradicardia/patología , Bradicardia/fisiopatología , Bromodesoxiuridina/metabolismo , Hiperreactividad Bronquial/sangre , Hiperreactividad Bronquial/fisiopatología , Líquido del Lavado Bronquioalveolar/inmunología , Broncoconstricción/efectos de los fármacos , División Celular/efectos de los fármacos , Estimulación Eléctrica , Eosinófilos/efectos de los fármacos , Etanercept/farmacología , Femenino , Cobayas , Linfocitos/efectos de los fármacos , Linfocitos/patología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Cloruro de Metacolina/farmacología , Monocitos/efectos de los fármacos , Monocitos/patología , Neutrófilos/efectos de los fármacos , Neutrófilos/patología , Ozono , Nervio Vago/efectos de los fármacos , Nervio Vago/fisiopatología
15.
Res Rep Health Eff Inst ; (191): 1-41, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29659241

RESUMEN

Introduction: Exposure to ozone induces deleterious responses in the airways that include shortness of breath, inflammation, and bronchoconstriction. People with asthma have increased airway sensitivity to ozone and other irritants. Dr. Allison Fryer and colleagues addressed how exposure to ozone affects the immune and physiological responses in guinea pigs. Guinea pigs are considered a useful animal model for studies of respiratory and physiological responses in humans; their response to airborne allergens is similar to that in humans and shares some features of allergic asthma. Fryer and colleagues had previously observed that within 24 hours of exposure, ozone not only induced bronchoconstriction but also stimulated the production of new cells in the bone marrow, where all white blood cells develop. As a result of ozone exposure, increased numbers of newly synthesized white blood cells, particularly eosinophils, moved into the blood and lungs. The central hypothesis of the current study was that newly synthesized eosinophils recruited to the lungs 3 days after ozone exposure were beneficial to the animals because they reduced ozoneinduced bronchoconstriction. The investigators also hypothesized that the beneficial effect seen in normal (nonsensitized) animals was lost in animals that had been injected with an allergen, ovalbumin (sensitized). They also planned to explore the effects of inhibitors of certain cytokines (cellsignaling molecules). Immune responses in sensitized animals are dominated by a Th2 pattern, which is characterized by the synthesis of cytokines (interleukin [IL]-4, IL-5, and IL-13) and the Th2 subset of CD4+ T lymphocytes and the cells they activate (predominantly eosinophils, and B lymphocytes that switch to making immunoglobulin E [IgE]). Thus, sensitized animals were used as a model of allergic humans, whose immune responses tend to be dominated by IgE. Approach: Fryer and colleagues exposed normal and sensitized (allergic) guinea pigs to 2 ppm ozone or filtered air for 4 hours and measured changes in cell numbers and airway responses 1 or 3 days later. They counted the numbers of eosinophils and other white blood cells (macrophages, neutrophils, and lymphocytes) in bone marrow, blood, and bronchoalveolar lung lavage fluid. The investigators also measured important physiological responses, including bronchoconstriction. Some animals were pretreated with etanercept and monoclonal anti-IL-5, which block tumor necrosis factor-a (TNFa) and IL-5, respectively. TNFa and IL-5 blockers have been used to treat patients with asthma. A key feature of the study was a technique to distinguish which white blood cells were synthesized after exposure from those that already existed, by injecting animals with bromodeoxyuridine (BrdU). BrdU is a thymidine analogue that is incorporated into the DNA of dividing cells, serving as a marker of newly produced cells. Therefore, a snapshot can be obtained of the proportion of newly synthesized (BrdU-positive) versus pre-existing (BrdU-negative) cell types. Key results: 1. Allergic and normal animals differed in the time course of bronchoconstriction and changes in cell types after ozone exposure. In normal animals, bronchoconstriction increased substantially at day 1 but decreased by day 3 after ozone exposure. In contrast, in allergic animals bronchoconstriction remained high at day 3. Ozone also increased the percentage of newly formed, BrdU2 positive eosinophils in the bone marrow and lungs of normal but not allergic animals. 2. Pretreatment with the TNFa blocker etanercept had complex effects, which differed between normal and allergic animals. In normal animals, etanercept decreased ozone-induced new synthesis of eosinophils in the bone marrow and blocked eosinophil migration to the lung; it also increased bronchoconstriction at day 3 (relative to day 1 without etanercept). In allergic animals, etanercept had no effect on any cell type in the bone marrow or lung after exposure to ozone and did not change bronchoconstriction compared with allergic animals not treated with etanercept. Etanercept tended to increase the numbers of blood monocytes and lymphocytes in air- and ozone-exposed normal and allergic animals at day 3, but had no effect on eosinophils in blood at this time point. This was one of the few statistically significant findings in the blood of exposed animals in the study. 3. Anti-IL-5 reduced bronchoconstriction at day 3 after exposure of allergic animals to ozone. In contrast, bronchoconstriction was greatly increased in normal animals treated with anti-IL-5. Conclusions: Fryer and colleagues explored the airway and cellular responses in guinea pigs exposed to ozone. The HEI Review Committee, which conducted an independent review of the study, agreed that the findings supported the authors' hypothesis (1) that exposure to ozone stimulates production of eosinophils in bone marrow, (2) that these newly formed eosinophils migrate to the lungs, and (3) that those eosinophils play a delayed but potentially beneficial role in reducing ozone-induced inflammation in the airways of healthy normal animals, but not in allergen-sensitized animals. The Committee also agreed that guinea pigs were a good model for studying responses to an allergen, because a major subtype of asthma (the high Th2 or allergic type) is associated with high levels of eosinophils in the blood. A novel finding was that the TNFa blocker etanercept decreased ozone-induced formation of eosinophils in the bone marrow and blocked eosinophil migration to the lung in normal animals. However, because injecting etanercept had little effect on eosinophils and did not decrease bronchoconstriction in allergic guinea pigs, the potential for treating patients with allergic asthma with TNFa blockers is uncertain. This is consistent with the poor performance of TNFa blockers in clinical studies of asthma treatment. Blocking the cytokine IL-5 with an anti-IL-5 antibody substantially decreased bronchoconstriction in sensitized animals. This suggests that therapies targeting IL-5 and eosinophils would be promising in at least some types of asthma. The Committee expressed caution toward experiments with cytokine blockers, both in animal models and humans, because such blockers are often not specific to a particular cell type and may differ at different sites in the body. Without further detailed confirmation of the effects of the blockers, interpreting these experiments can be challenging. The Committee concluded that the study by Fryer and colleagues raises several intriguing directions for future research, including exploring ways in which newly formed eosinophils differ from pre-existing ones, and how such findings apply to humans with allergy or asthma.


Asunto(s)
Broncoconstricción/efectos de los fármacos , Citocinas/antagonistas & inhibidores , Eosinófilos/inmunología , Ozono/administración & dosificación , Ozono/toxicidad , Eosinofilia Pulmonar/inmunología , Factor de Necrosis Tumoral alfa/farmacología , Administración por Inhalación , Animales , Broncoconstricción/inmunología , Citocinas/inmunología , Cobayas , Ovalbúmina
16.
Am J Respir Cell Mol Biol ; 55(3): 387-94, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27049514

RESUMEN

Respiratory viruses cause asthma exacerbations. Because eosinophils are the prominent leukocytes in the airways of 60-70% of patients with asthma, we evaluated the effects of eosinophils on a common respiratory virus, parainfluenza 1, in the lung. Eosinophils recruited to the airways of wild-type mice after ovalbumin sensitization and challenge significantly decreased parainfluenza virus RNA in the lungs 4 days after infection compared with nonsensitized animals. This antiviral effect was also seen in IL-5 transgenic mice with an abundance of airway eosinophils (NJ.1726) but was lost in transgenic eosinophil-deficient mice (PHIL) and in IL-5 transgenic mice crossed with eosinophil-deficient mice (NJ.1726-PHIL). Loss of the eosinophil granule protein eosinophil peroxidase, using eosinophil peroxidase-deficient transgenic mice, did not reduce eosinophils' antiviral effect. Eosinophil antiviral mechanisms were also explored in vitro. Isolated human eosinophils significantly reduced parainfluenza virus titers. This effect did not involve degradation of viral RNA by eosinophil granule RNases. However, eosinophils treated with a nitric oxide synthase inhibitor lost their antiviral activity, suggesting eosinophils attenuate viral infectivity through production of nitric oxide. Consequently, eosinophil nitric oxide production was measured with an intracellular fluorescent probe. Eosinophils produced nitric oxide in response to virus and to a synthetic agonist of the virus-sensing innate immune receptor, Toll-like receptor (TLR) 7. IFNγ increased expression of eosinophil TLR7 and potentiated TLR7-induced nitric oxide production. These results suggest that eosinophils promote viral clearance in the lung and contribute to innate immune responses against respiratory virus infections in humans.


Asunto(s)
Antivirales/inmunología , Eosinófilos/inmunología , Paramyxovirinae/inmunología , Animales , Eosinófilos/enzimología , Femenino , Humanos , Interferón gamma/metabolismo , Pulmón/inmunología , Pulmón/patología , Pulmón/virología , Macaca mulatta , Ratones Endogámicos C57BL , Óxido Nítrico/metabolismo , Ovalbúmina/inmunología , Infecciones por Paramyxoviridae/inmunología , Infecciones por Paramyxoviridae/virología , Paramyxovirinae/patogenicidad , Peroxidasa/metabolismo , Ribonucleasas/metabolismo , Receptor Toll-Like 7/metabolismo
17.
J Allergy Clin Immunol ; 135(2): 477-87, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25129680

RESUMEN

BACKGROUND: Contact toxicant reactions are accompanied by localized skin inflammation and concomitant increases in site-specific itch responses. The role(s) of eosinophils in these reactions is poorly understood. However, previous studies have suggested that localized eosinophil-nerve interactions at sites of inflammation significantly alter tissue innervation. OBJECTIVE: To define a potential mechanistic link between eosinophils and neurosensory responses in the skin leading to itching. METHODS: BALB/cJ mice were exposed to different contact toxicants, identifying trimellitic anhydride (TMA) for further study on the basis of inducing a robust eosinophilia accompanied by degranulation. Subsequent studies using TMA were performed with wild type versus eosinophil-deficient PHIL mice, assessing edematous responses and remodeling events such as sensory nerve innervation of the skin and induced pathophysiological responses (ie, itching). RESULTS: Exposure to TMA, but not dinitrofluorobenzene, resulted in a robust eosinophil skin infiltrate accompanied by significant levels of degranulation. Follow-up studies using TMA with wild type versus eosinophil-deficient PHIL mice showed that the induced edematous responses and histopathology were, in part, causatively linked with the presence of eosinophils. Significantly, these data also demonstrated that eosinophil-mediated events correlated with a significant increase in substance P content of the cutaneous nerves and an accompanying increase in itching, both of which were abolished in the absence of eosinophils. CONCLUSIONS: Eosinophil-mediated events following TMA contact toxicant reactions increase skin sensory nerve substance P and, in turn, increase itching responses. Thus, eosinophil-nerve interactions provide a potential mechanistic link between eosinophil-mediated events and neurosensory responses following exposure to some contact toxicants.


Asunto(s)
Eosinófilos/inmunología , Prurito/etiología , Piel/inmunología , Piel/inervación , Alérgenos/administración & dosificación , Alérgenos/inmunología , Animales , Degranulación de la Célula , Colágeno/metabolismo , Dinitrofluorobenceno/administración & dosificación , Dinitrofluorobenceno/efectos adversos , Modelos Animales de Enfermedad , Eosinofilia/inmunología , Eosinofilia/metabolismo , Eosinofilia/patología , Eosinófilos/metabolismo , Fibrosis , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Ratones , Anhídridos Ftálicos/administración & dosificación , Anhídridos Ftálicos/efectos adversos , Anhídridos Ftálicos/inmunología , Prurito/diagnóstico , Piel/efectos de los fármacos , Piel/patología , Sustancia P/genética , Sustancia P/metabolismo
18.
Transfus Med Hemother ; 43(2): 114-9, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27226793

RESUMEN

Allergic asthma and allergic rhinitis are inflammatory diseases of the respiratory tract characterized by an excessive type-2 T helper cell (Th2) immune response. Toll-like receptor 7 (TLR7) is a single-stranded viral RNA receptor expressed in the airway that initiates a Th1 immune response and has garnered interest as a novel therapeutic target for treatment of allergic airway diseases. In animal models, synthetic TLR7 agonists reduce airway hyperreactivity, eosinophilic inflammation, and airway remodeling while decreasing Th2-associated cytokines. Furthermore, activation of TLR7 rapidly relaxes airway smooth muscle via production of nitric oxide. Thus, TLR7 has dual bronchodilator and anti-inflammatory effects. Two TLR7 ligands with promising pharmacologic profiles have entered clinical trials for the treatment of allergic rhinitis. Moreover, TLR7 agonists are potential antiviral therapies against respiratory viruses. TLR7 agonists enhance influenza vaccine efficacy and also reduce viral titers when given during an active airway infection. In this review, we examine the current data supporting TLR7 as a therapeutic target in allergic airway diseases.

19.
Am J Respir Cell Mol Biol ; 53(5): 738-47, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25897622

RESUMEN

We previously demonstrated that antigen sensitization increases vulnerability to airway hyperreactivity induced by the organophosphorus pesticide (OP) parathion. Sensitization also changes the mechanism of parathion-induced airway hyperreactivity to one that is dependent on IL-5. To determine whether this effect can be generalized to other OPs, and to other classes of pesticides, we measured airway responsiveness to vagal stimulation or intravenous acetylcholine in nonsensitized and ovalbumin-sensitized guinea pigs 24 hours after a single subcutaneous injection of the OPs diazinon or chlorpyrifos, or the pyrethroid permethrin. Sensitization exacerbated the effects of chlorpyrifos on bronchoconstriction in response to vagal stimulation or intravenous acetylcholine. Pretreatment with function-blocking IL-5 antibody prevented chlorpyrifos-induced airway hyperreactivity in sensitized, but not in nonsensitized, guinea pigs. In sensitized guinea pigs, blocking IL-5 decreased eosinophil activation, as measured by decreased eosinophil major basic protein in the trachea. In contrast, sensitization did not alter diazinon-induced airway hyperreactivity, and permethrin did not cause airway hyperreactivity in either nonsensitized or sensitized guinea pigs. None of the pesticides affected inflammatory cells in the bronchoalveolar lavage fluid or blood. We have previously shown that three different OPs cause airway hyperreactivity via loss of neuronal M2 muscarinic receptor function. Similar to parathion, but unlike diazinon, the mechanism of chlorpyrifos-induced airway hyperreactivity is changed by sensitization. Thus, OP-induced airway hyperreactivity is dependent on sensitization status and on the OP used, which may influence therapeutic approaches.


Asunto(s)
Asma/inmunología , Hiperreactividad Bronquial/inmunología , Broncoconstricción/efectos de los fármacos , Inmunización , Insecticidas/farmacología , Ovalbúmina/farmacología , Acetilcolina/farmacología , Animales , Anticuerpos Neutralizantes/farmacología , Asma/inducido químicamente , Asma/genética , Asma/patología , Hiperreactividad Bronquial/inducido químicamente , Hiperreactividad Bronquial/genética , Hiperreactividad Bronquial/patología , Líquido del Lavado Bronquioalveolar/química , Broncoconstricción/inmunología , Cloropirifos/farmacología , Diazinón/farmacología , Eosinófilos/efectos de los fármacos , Eosinófilos/inmunología , Eosinófilos/patología , Femenino , Cobayas , Inyecciones Intravenosas , Inyecciones Subcutáneas , Interleucina-5/antagonistas & inhibidores , Interleucina-5/genética , Interleucina-5/inmunología , Permetrina/farmacología , Tráquea/efectos de los fármacos , Tráquea/inmunología , Tráquea/patología , Nervio Vago/efectos de los fármacos , Nervio Vago/inmunología
20.
Am J Respir Cell Mol Biol ; 51(4): 494-501, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24735073

RESUMEN

Respiratory viral infections are associated with the majority of asthma attacks. Inhibitory M2 receptors on parasympathetic nerves, which normally limit acetylcholine (ACh) release, are dysfunctional after respiratory viral infection. Because IL-1ß is up-regulated during respiratory viral infections, we investigated whether IL-1ß mediates M2 receptor dysfunction during parainfluenza virus infection. Virus-infected guinea pigs were pretreated with the IL-1ß antagonist anakinra. In the absence of anakinra, viral infection increased bronchoconstriction in response to vagal stimulation but not to intravenous ACh, and neuronal M2 muscarinic receptors were dysfunctional. Pretreatment with anakinra prevented virus-induced increased bronchoconstriction and M2 receptor dysfunction. Anakinra did not change smooth muscle M3 muscarinic receptor response to ACh, lung viral loads, or blood and bronchoalveolar lavage leukocyte populations. Respiratory virus infection decreased M2 receptor mRNA expression in parasympathetic ganglia extracted from infected animals, and this was prevented by blocking IL-1ß or TNF-α. Treatment of SK-N-SH neuroblastoma cells or primary cultures of guinea pig parasympathetic neurons with IL-1ß directly decreased M2 receptor mRNA, and this was not synergistic with TNF-α treatment. Treating guinea pig trachea segment with TNF-α or IL-1ß in vitro increased tracheal contractions in response to activation of airway nerves by electrical field stimulation. Blocking IL-1ß during TNF-α treatment prevented this hyperresponsiveness. These data show that virus-induced hyperreactivity and M2 dysfunction involves IL-1ß and TNF-α, likely in sequence with TNF-α causing production of IL-1ß.


Asunto(s)
Hiperreactividad Bronquial/metabolismo , Broncoconstricción , Interleucina-1beta/metabolismo , Pulmón/metabolismo , Infecciones por Paramyxoviridae/metabolismo , Paramyxoviridae/patogenicidad , Receptor Muscarínico M2/metabolismo , Infecciones del Sistema Respiratorio/metabolismo , Animales , Hiperreactividad Bronquial/inmunología , Hiperreactividad Bronquial/fisiopatología , Hiperreactividad Bronquial/prevención & control , Hiperreactividad Bronquial/virología , Pruebas de Provocación Bronquial , Broncoconstricción/efectos de los fármacos , Línea Celular Tumoral , Modelos Animales de Enfermedad , Cobayas , Interacciones Huésped-Patógeno , Proteína Antagonista del Receptor de Interleucina 1/farmacología , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/inervación , Pulmón/fisiopatología , Pulmón/virología , Paramyxoviridae/inmunología , Infecciones por Paramyxoviridae/inmunología , Infecciones por Paramyxoviridae/fisiopatología , Infecciones por Paramyxoviridae/virología , Sistema Nervioso Parasimpático/inmunología , Sistema Nervioso Parasimpático/metabolismo , Sistema Nervioso Parasimpático/fisiopatología , Sistema Nervioso Parasimpático/virología , Infecciones del Sistema Respiratorio/inmunología , Infecciones del Sistema Respiratorio/fisiopatología , Infecciones del Sistema Respiratorio/virología , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA