Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Bioorg Med Chem Lett ; 26(11): 2695-700, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27090558

RESUMEN

A novel three components approach for the synthesis of bioactive Ru-arene pyridinylmethylene complexes has been developed using pyridine carboxaldehyde, amino pyridine and dichloro (p-cymene) ruthenium(II) dimer as starting materials. These scaffolds were screened for their anticancer activity against breast cancer (MCF7) and human Epitheloid Cervix Carcinoma (HeLa) cell line. It was established that compounds [(η(6)-pcymene)RuCl(κ(2)-N,N-(3,5-dinitro-pyridin-2-yl)-pyridin-2-ylmethylene-amine)]PF6 (4o), [(η(6)-pcymene)RuCl(κ(2)-N,N-N-(3,5-dibromo-pyridin-2-yl)-pyridin-2-ylmethylene-amine)]PF6 (4c), [(η(6)-pcymene)RuCl(κ(2)-N,N-(3,5-dibromo-6-methylpyridin-2-yl)-pyridin-2-ylmethylene-amine)]PF6 (4j) and [(η(6)-pcymene)RuCl(κ(2)-N,N-3(3-bromo-5-methyl-pyridin-2-yl)-pyridin-2-ylmethylene-amine)]PF6 (4b) were significantly active against both the cell lines.


Asunto(s)
Antineoplásicos/farmacología , Compuestos Organometálicos/farmacología , Piridinas/farmacología , Rutenio/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Células HeLa , Humanos , Células MCF-7 , Estructura Molecular , Compuestos Organometálicos/síntesis química , Compuestos Organometálicos/química , Piridinas/química , Rutenio/química , Relación Estructura-Actividad
2.
Front Pharmacol ; 15: 1434573, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39092223

RESUMEN

The recent re-emergence and the increasing popularity of nitazenes, a group of new synthetic opioids (NSO) that belong to the benzimidazole chemical class, has raised public health concerns. As a class of potential opioid analgesic agents whose development was discontinued in the 1960s due to their high potential for abuse, very little is known about their metabolism and physiologic disposition. In the current study, three nitazenes-butonitazene, isotonitazene and protonitaze were incubated in human liver microsomes (HLM), human S9 (HS9) fractions and recombinant cytochrome P450 enzymes. All three nitazenes were rapidly metabolized in both HLM and HS9 with over 95% depletion within 60 min. In HLM, butonitazene, isotonitazene and protonitazene had in vitro intrinsic clearance (CLint) (µL/min/mg protein) values of 309, 221 and 216 respectively compared to 150 of verapamil, the positive control. In HS9, CLint values were 217, 139, and 150 for butonitazene, isotonitazene and protonitazene respectively compared to only 35 for testosterone, the control probe substrate. Putative metabolite identified from this study include products of hydroxylation, desethylation, dealkylation, desethylation followed by dealkylation, and desethylation followed by hydroxylation. The metabolic phenotyping showed CYP2D6, CYP2B6 and CYP2C8 and the major hepatic enzymes responsible for the metabolism of nitazenes. Within 30 min of incubation, CYP2D6 depleted butonitazene (99%), isotonitazene (72%) and butonitazene (100%) significantly. The rapid metabolism of nitazenes may be an important factor in accurate and timely detections and quantitation of the unchanged drugs in human matrices following intoxication or in forensic analysis. The involvement of multiple polymorphic CYPs in their metabolism may play important roles in the susceptibility to intoxication and/or addiction, depending on the activity of the metabolites.

3.
Nat Commun ; 14(1): 6050, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37770425

RESUMEN

Solvent shielding of the amide hydrogen bond donor (NH groups) through chemical modification or conformational control has been successfully utilized to impart membrane permeability to macrocyclic peptides. We demonstrate that passive membrane permeability can also be conferred by masking the amide hydrogen bond acceptor (>C = O) through a thioamide substitution (>C = S). The membrane permeability is a consequence of the lower desolvation penalty of the macrocycle resulting from a concerted effect of conformational restriction, local desolvation of the thioamide bond, and solvent shielding of the amide NH groups. The enhanced permeability and metabolic stability on thioamidation improve the bioavailability of a macrocyclic peptide composed of hydrophobic amino acids when administered through the oral route in rats. Thioamidation of a bioactive macrocyclic peptide composed of polar amino acids results in analogs with longer duration of action in rats when delivered subcutaneously. These results highlight the potential of O to S substitution as a stable backbone modification in improving the pharmacological properties of peptide macrocycles.


Asunto(s)
Amidas , Tioamidas , Ratas , Animales , Amidas/química , Tioamidas/química , Disponibilidad Biológica , Péptidos , Permeabilidad , Aminoácidos , Solventes
4.
Nanomedicine ; 8(5): 776-83, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21930109

RESUMEN

Dendrimer hydrogel (DH), made from ultraviolet-cured polyamidoamine dendrimer G3.0 tethered with three polyethylene glycol (PEG, 12,000 Da)-acrylate chains (8.1% w/v) in pH 7.4 phosphate buffered saline (PBS), was studied for the delivery of brimonidine (0.1% w/v) and timolol maleate (0.5% w/v), two antiglaucoma drugs. DH was found to be mucoadhesive to mucin particles and nontoxic to human corneal epithelial cells. DH increased the PBS solubility of brimonidine by 77.6% and sustained the in vitro release of both drugs over 56-72 hours. As compared to eye drop formulations (PBS-drug solutions), DH brought about substantially higher human corneal epithelial cells uptake and significantly increased bovine corneal transport for both drugs. DH increased timolol maleate uptake in bovine corneal epithelium, stroma, and endothelium by 0.4- to 4.6-fold. This work demonstrated that DH can enhance the delivery of antiglaucoma drugs in multiple aspects and represents a novel platform for ocular drug delivery. FROM THE CLINICAL EDITOR: Dendrimer hydrogel was studied as agent for simultaneous delivery of two anti-glaucoma drugs, one hydrophobic and one hydrophilic. Superiority over standard PBS-based formulation was clearly demonstrated for both drugs. The work may be a novel platform for ocular drug delivery.


Asunto(s)
Dendrímeros/farmacología , Combinación de Medicamentos , Glaucoma/tratamiento farmacológico , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacología , Quinoxalinas/farmacología , Timolol/farmacocinética , Animales , Tartrato de Brimonidina , Bovinos , Línea Celular , Sistemas de Liberación de Medicamentos , Epitelio Corneal/citología , Epitelio Corneal/efectos de los fármacos , Humanos , Soluciones Oftálmicas/administración & dosificación , Soluciones Oftálmicas/química
5.
Drug Metab Dispos ; 39(9): 1529-37, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21673129

RESUMEN

Ophthalmic carbonic anhydrase inhibitors have been shown to improve retinal and optic nerve blood flow. However, the relative tissue distributions of commercially available carbonic anhydrase inhibitors to the optic nerve are not known. The objective of this study was to compare the ocular pharmacokinetics and tissue distribution profiles of dorzolamide and brinzolamide after single and multiple topical applications. Pigmented rabbits were treated with single or multiple topical administrations of 30 µl of Trusopt (dorzolamide hydrochloride ophthalmic solution, 2%) to one eye and 30 µl of Azopt (brinzolamide ophthalmic suspension, 1%) to the other eye. Rabbits were euthanized at 10 predetermined time intervals over a period of 24 h, and ocular tissues and plasma samples were collected. For multiple dosing, rabbits were dosed twice per day with an 8-h interval between two doses, groups of rabbits were euthanized at 7, 14, and 21 days at 1 h after the last dose, and ocular tissues and plasma samples were collected. Drug levels in tissue samples were measured using liquid chromatography/tandem mass spectrometry. Pharmacokinetic parameters (C(max), T(max), and AUC(0-24)) were estimated by noncompartmental analysis. After a single dose, dorzolamide delivery (AUC(0-24)) to the aqueous humor, anterior sclera, posterior sclera, anterior retina, posterior retina, anterior vitreous, and optic nerve was 2-, 7-, 2.6-, 1.4-, 1.9-, 1.2-, and 9-fold higher than those of brinzolamide. C(max) was 2- to 5-fold higher for dorzolamide than that of brinzolamide in all of the ocular tissue. After multiple dosing, dorzolamide levels in the aqueous humor, sclera, retina, vitreous humor, and optic nerve were higher than those of brinzolamide, but statistical significance was achieved only with aqueous humor, vitreous humor, and optic nerve. Dorzolamide levels in the aqueous humor, anterior vitreous, posterior vitreous, and optic nerve were 1.4- to 3.2-, 2.4- to 2.7-, 2.2- to 4.5-, and 2.4- to 5.2-fold higher than those of brinzolamide. Upon multiple dosing, both drugs accumulated in all of the tissues except the conjunctiva, where the drug levels were lower than those observed with single dosing. No significant differences were found in the AUC values of these two drugs in the cornea and conjunctiva after single and multiple dosing. Drug levels were significantly higher in anterior regions than posterior regions in the sclera, retina, and vitreous for both drugs.


Asunto(s)
Ojo/metabolismo , Sulfonamidas/farmacocinética , Tiazinas/farmacocinética , Tiofenos/farmacocinética , Administración Tópica , Animales , Inhibidores de Anhidrasa Carbónica/farmacocinética , Cromatografía Liquida/métodos , Esquema de Medicación , Ojo/irrigación sanguínea , Ojo/efectos de los fármacos , Masculino , Nervio Óptico/irrigación sanguínea , Nervio Óptico/efectos de los fármacos , Nervio Óptico/metabolismo , Conejos , Flujo Sanguíneo Regional/efectos de los fármacos , Sulfonamidas/administración & dosificación , Espectrometría de Masas en Tándem/métodos , Tiazinas/administración & dosificación , Tiofenos/administración & dosificación
7.
RSC Adv ; 9(16): 8748-8752, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35517674

RESUMEN

A series of quinoxaline-2-hydroxyphenylbenzothiazole scaffolds were synthesized and characterized using NMR, UV, fluorescence spectroscopy and LCMS. These newly synthesized compounds were found to be cytotoxic in human epithelioid cervix carcinoma (HeLa) and human colon cancer cell lines (Caco-2). Selectivity of the compounds 7e and 7g are more than 9 fold higher in Caco-2 cells with respect to the normal cell line HEK-293. The most fluorescent compound 7e has displayed high cytoselectivity, significant cellular uptake in HeLa cells and strong binding efficacy with DNA and BSA. The most potent compound 7g has primarily classified as BCS class 4 and BDDCS class 4.

8.
R Soc Open Sci ; 5(2): 171622, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29515874

RESUMEN

Adenosine is known as an endogenous purine nucleoside and it modulates a wide variety of physiological responses by interacting with adenosine receptors. Among the four adenosine receptor subtypes, the A3 receptor is of major interest in this study as it is overexpressed in some cancer cell lines. Herein, we have highlighted the strategy of designing the hA3 receptor targeted novel benzothiazolylquinoline scaffolds. The radioligand binding data of the reported compounds are rationalized with the molecular docking results. Compound 6a showed best potency and selectivity at hA3 among other adenosine receptors.

9.
Curr Pharm Biotechnol ; 18(14): 1151-1158, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29521222

RESUMEN

BACKGROUND: Drug transporters function as gatekeepers and modulate drug access into body and various tissues. Thus, a thorough and precise understanding of transporter liability for compound uptake and efflux is critical during drug development. METHODS: In the present study, we assessed the apparent permeability (Papp) and compared efflux ratio of various compounds in stably transfected Madin-Darby Canine Kidney (MDCKII) cells overexpressing human P-gp (MDCKII-MDR1), human BCRP (MDCKII-BCRP), wild-type (MDCKII-WT), and Caco-2 cell monolayers. RESULTS: We observed that quinidine, a substrate for MDR1 transporter, showed efflux ratio (Papp B-A/ Papp A-B) of 838 in MDCKII-MDR1 cells which plummeted to 14 in presence of verapamil, a known inhibitor of MDR1. With MDCKII-WT cells, Papp of quinidine dropped from 2 to 1, in the presence of verapamil. Caco-2 cells showed a diminutive decrease in efflux ratio of quinidine from 2.5 to 1.6 by verapamil. Prazosin and dantrolene were evaluated in MDCKII-BCRP cells and were found to have 80-fold higher efflux ratio compared to MDCKII-WT cells. In Caco-2 cells, prazosin and dantrolene showed efflux ratio of 4 and 2, respectively. Rhodamine-123, a fluorogenic probe substrate of MDR1 showed an efflux ratio of 4 in Caco-2 cells and BCRP substrate estrone-3-sulphate showed an efflux ratio of 7. In presence of BCRP inhibitor fumitremorgin-c, the efflux ratio of estrone-3-sulfate dropped to 1 in Caco-2 cells. CONCLUSION: The very high efflux ratios of MDR1 and BCRP substrates in transfected MDCKII cells clearly demonstrate the potential usefulness of these models to provide more definitive data to evaluate the transporter involvement compared to Caco-2 or MDCKII-WT cells.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Proteínas de Neoplasias/metabolismo , Preparaciones Farmacéuticas/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/antagonistas & inhibidores , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/antagonistas & inhibidores , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Animales , Transporte Biológico , Células CACO-2 , Perros , Humanos , Cinética , Células de Riñón Canino Madin Darby , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/genética , Permeabilidad , Quinidina/farmacología , Especificidad por Sustrato , Transfección , Verapamilo/farmacología
10.
Eur J Pharm Sci ; 77: 90-9, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26026989

RESUMEN

Noscapine (Nos), an antitussive benzylisoquinoline opium alkaloid, is a non-toxic tubulin-binding agent currently in Phase II clinical trials for cancer chemotherapy. While preclinical studies have established its tumor-inhibitory properties in various cancers, poor absorptivity and rapid first-pass metabolism producing several uncharacterized metabolites for efficacy, present an impediment in translating its efficacy in humans. Here we report novel formulations of Nos in combination with dietary agents like capsaicin (Cap), piperine (Pip), eugenol (Eu) and curcumin (Cur) known for modulating Phase I and II drug metabolizing enzymes. In vivo pharmacokinetic (PK), organ toxicity evaluation of combinations, microsomal stability and in vitro cytochrome P450 (CYP) inhibition effects of Nos, Cap and Pip using human liver microsomes were performed. Single-dose PK screening of combinations revealed that the relative exposure of Nos (2 µg h/mL) was enhanced by 2-fold (4 µg h/mL) by Cap and Pip and their plasma concentration-time profiles showed multiple peaking phenomena for Nos indicating enterohepatic recirculation or differential absorption from intestine. CYP inhibition studies confirmed that Nos, Cap and Pip are not potent CYP inhibitors (IC50>1 µM). Repeated oral dosing of Nos, Nos+Cap and Nos+Pip showed lower exposure (Cmax and AUClast) of Nos on day 7 compared to day 1. Nos Cmax decreased from 3087 ng/mL to 684 ng/mL and AUClast from 1024 ng h/mL to 508 ng h/mL. In presence of Cap and Pip, the decrease in Cmax and AUClast of Nos was similar. This may be due to potential enzyme induction leading to rapid clearance of Nos as the trend was observed in Nos alone group also. The lack of effect on intrinsic clearance of Nos suggests that the potential drug biotransformation modulators employed in this study did not contribute toward increased exposure of Nos on repeated dosing. We envision that Nos-induced enzyme induction could alter the therapeutic efficacy of co-administered drugs, hence emphasizing the need for strategic evaluation of the metabolism of Nos to reap its maximum efficacy.


Asunto(s)
Antitusígenos/farmacocinética , Mucosa Intestinal/metabolismo , Hígado/metabolismo , Noscapina/farmacocinética , Animales , Interacciones Alimento-Droga , Humanos , Masculino , Ratones
11.
PLoS One ; 9(9): e108386, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25251219

RESUMEN

Natural and complementary therapies in conjunction with mainstream cancer care are steadily gaining popularity. Ginger extract (GE) confers significant health-promoting benefits owing to complex additive and/or synergistic interactions between its bioactive constituents. Recently, we showed that preservation of natural "milieu" confers superior anticancer activity on GE over its constituent phytochemicals, 6-gingerol (6G), 8-gingerol (8 G), 10-gingerol (10 G) and 6-shogaol (6S), through enterohepatic recirculation. Here we further evaluate and compare the effects of GE and its major bioactive constituents on cytochrome P450 (CYP) enzyme activity in human liver microsomes by monitoring metabolites of CYP-specific substrates using LC/MS/MS detection methods. Our data demonstrate that individual gingerols are potent inhibitors of CYP isozymes, whereas GE exhibits a much higher half-maximal inhibition value, indicating no possible herb-drug interactions. However, GE's inhibition of CYP1A2 and CYP2C8 reflects additive interactions among the constituents. In addition, studies performed to evaluate transporter-mediated intestinal efflux using Caco-2 cells revealed that GE and its phenolics are not substrates of P-glycoprotein (Pgp). Intriguingly, however, 10 G and 6S were not detected in the receiver compartment, indicating possible biotransformation across the Caco-2 monolayer. These data strengthen the notion that an interplay of complex interactions among ginger phytochemicals when fed as whole extract dictates its bioactivity highlighting the importance of consuming whole foods over single agents. Our study substantiates the need for an in-depth analysis of hepatic biotransformation events and distribution profiles of GE and its active phenolics for the design of safe regimens.


Asunto(s)
Catecoles/farmacología , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Microsomas Hepáticos/enzimología , Extractos Vegetales/farmacología , Zingiber officinale/química , Células CACO-2 , Catecoles/química , Inhibidores Enzimáticos del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/metabolismo , Alcoholes Grasos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/enzimología , Microsomas Hepáticos/efectos de los fármacos , Extractos Vegetales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA