Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Microbiol Rep ; 16(1): e13211, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37991154

RESUMEN

Reductions in soil moisture due to prolonged episodes of drought can potentially affect whole forest ecosystems, including soil microorganisms and their functions. We investigated how the composition of soil microbial communities is affected by prolonged episodes of water limitation. In a mesocosm experiment with Scots pine saplings and natural forest soil maintained at different levels of soil water content over 2 years, we assessed shifts in prokaryotic and fungal communities and related these to changes in plant development and soil properties. Prolonged water limitation induced progressive changes in soil microbial community composition. The dissimilarity between prokaryotic communities at different levels of water limitation increased over time regardless of the recurrent seasons, while fungal communities were less affected by prolonged water limitation. Under low soil water contents, desiccation-tolerant groups outcompeted less adapted, and the lifestyle of prokaryotic taxa shifted from copiotrophic to oligotrophic. While the abundance of saprotrophic and ligninolytic groups increased alongside an accumulation of dead plant material, the abundance of symbiotic and nutrient-cycling taxa decreased, likely impairing the development of the trees. Overall, prolonged episodes of drought appeared to continuously alter the structure of microbial communities, pointing to a potential loss of critical functions provided by the soil microbiome.


Asunto(s)
Microbiota , Suelo , Suelo/química , Microbiología del Suelo , Bosques , Árboles
2.
FEMS Microbiol Ecol ; 99(6)2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37188639

RESUMEN

The soil microbiome is crucial for regulating biogeochemical processes and can, thus, strongly influence tree health, especially under stress conditions. However, little is known about the effect of prolonged water deficit on soil microbial communities during the development of saplings. We assessed the response of prokaryotic and fungal communities to different levels of experimental water limitation in mesocosms with Scots pine saplings. We combined analyses of physicochemical soil properties and tree growth with DNA metabarcoding of soil microbial communities throughout four seasons. Seasonal changes in soil temperature and soil water content and a decreasing soil pH strongly influenced the composition of microbial communities but not their total abundance. Contrasting levels of soil water contents gradually altered the soil microbial community structure over the four seasons. Results indicated that prokaryotic communities were less resistant to water limitation than fungal communities. Water limitation promoted the proliferation of desiccation tolerant, oligotrophic taxa. Moreover, water limitation and an associated increase in soil C/N ratio induced a shift in the potential lifestyle of taxa from symbiotic to saprotrophic. Overall, water limitation appeared to alter soil microbial communities involved in nutrient cycling, pointing to potential consequences for forest health affected by prolonged episodes of drought.


Asunto(s)
Micobioma , Pinus sylvestris , Agua , Suelo , Bosques , Pinus sylvestris/fisiología , Microbiología del Suelo , Árboles , Bacterias/genética
3.
Plant Soil ; 490(1-2): 499-519, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37780069

RESUMEN

Background and aims: Tree species worldwide suffer from extended periods of water limitation. These conditions not only affect the growth and vitality of trees but also feed back on the cycling of carbon (C) at the plant-soil interface. However, the impact of progressing water loss from soils on the transfer of assimilated C belowground remains unresolved. Methods: Using mesocosms, we assessed how increasing levels of water deficit affect the growth of Pinus sylvestris saplings and performed a 13C-CO2 pulse labelling experiment to trace the pathway of assimilated C into needles, fine roots, soil pore CO2, and phospholipid fatty acids of soil microbial groups. Results: With increasing water limitation, trees partitioned more biomass belowground at the expense of aboveground growth. Moderate levels of water limitation barely affected the uptake of 13C label and the transit time of C from needles to the soil pore CO2. Comparatively, more severe water limitation increased the fraction of 13C label that trees allocated to fine roots and soil fungi while a lower fraction of 13CO2 was readily respired from the soil. Conclusions: When soil water becomes largely unavailable, C cycling within trees becomes slower, and a fraction of C allocated belowground may accumulate in fine roots or be transferred to the soil and associated microorganisms without being metabolically used. Supplementary Information: The online version contains supplementary material available at 10.1007/s11104-023-06093-5.

4.
Science ; 375(6587): 1430, 2022 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-35324285
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA