Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Hepatology ; 78(5): 1337-1351, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37021797

RESUMEN

BACKGROUND AND AIMS: Paucity of intrahepatic bile ducts (BDs) is caused by various etiologies and often leads to cholestatic liver disease. For example, in patients with Alagille syndrome (ALGS), which is a genetic disease primarily caused by mutations in jagged 1 ( JAG1) , BD paucity often results in severe cholestasis and liver damage. However, no mechanism-based therapy exists to restore the biliary system in ALGS or other diseases associated with BD paucity. Based on previous genetic observations, we investigated whether postnatal knockdown of the glycosyltransferase gene protein O -glucosyltransferase 1 ( Poglut1) can improve the ALGS liver phenotypes in several mouse models generated by removing one copy of Jag1 in the germline with or without reducing the gene dosage of sex-determining region Y-box 9 in the liver. APPROACH AND RESULTS: Using an ASO established in this study, we show that reducing Poglut1 levels in postnatal livers of ALGS mouse models with moderate to profound biliary abnormalities can significantly improve BD development and biliary tree formation. Importantly, ASO injections prevent liver damage in these models without adverse effects. Furthermore, ASO-mediated Poglut1 knockdown improves biliary tree formation in a different mouse model with no Jag1 mutations. Cell-based signaling assays indicate that reducing POGLUT1 levels or mutating POGLUT1 modification sites on JAG1 increases JAG1 protein level and JAG1-mediated signaling, suggesting a likely mechanism for the observed in vivo rescue. CONCLUSIONS: Our preclinical studies establish ASO-mediated POGLUT1 knockdown as a potential therapeutic strategy for ALGS liver disease and possibly other diseases associated with BD paucity.


Asunto(s)
Síndrome de Alagille , Glicosiltransferasas , Hígado , Oligonucleótidos Antisentido , Animales , Ratones , Síndrome de Alagille/genética , Síndrome de Alagille/metabolismo , Síndrome de Alagille/patología , Conductos Biliares Intrahepáticos/metabolismo , Conductos Biliares Intrahepáticos/patología , Proteínas de Unión al Calcio/genética , Colestasis/genética , Colestasis/metabolismo , Silenciador del Gen , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Hígado/metabolismo , Hígado/patología , Proteínas de la Membrana/genética , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/metabolismo , Fenotipo , Proteínas Serrate-Jagged/genética , Proteínas Serrate-Jagged/metabolismo
2.
Cell ; 132(2): 247-58, 2008 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-18243100

RESUMEN

Notch signaling is broadly used to regulate cell-fate decisions. We have identified a gene, rumi, with a temperature-sensitive Notch phenotype. At 28 degrees C-30 degrees C, rumi clones exhibit a full-blown loss of Notch signaling in all tissues tested. However, at 18 degrees C only a mild Notch phenotype is evident. In vivo analyses reveal that the target of Rumi is the extracellular domain of Notch. Notch accumulates intracellularly and at the cell membrane of rumi cells but fails to be properly cleaved, despite normal binding to Delta. Rumi is an endoplasmic reticulum-retained protein with a highly conserved CAP10 domain. Our studies show that Rumi is a protein O-glucosyltransferase, capable of adding glucose to serine residues in Notch EGF repeats with the consensus C1-X-S-X-P-C2 sequence. These data indicate that by O-glucosylating Notch in the ER, Rumi regulates its folding and/or trafficking and allows signaling at the cell membrane.


Asunto(s)
Proteínas de Drosophila , Glicosiltransferasas/química , Glicosiltransferasas/fisiología , Receptores Notch/metabolismo , Transducción de Señal , Alelos , Secuencia de Aminoácidos , Animales , Mapeo Cromosómico , Cromosomas , Secuencia de Consenso , Drosophila/química , Drosophila/embriología , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/deficiencia , Embrión no Mamífero , Retículo Endoplásmico/metabolismo , Regulación de la Expresión Génica , Genes de Insecto , Glucosa/metabolismo , Glucosiltransferasas/deficiencia , Glicosilación , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Homocigoto , Inmunohistoquímica , Modelos Biológicos , Mutación , Pliegue de Proteína , Estructura Terciaria de Proteína , Interferencia de ARN , Receptores Notch/genética , Serina/metabolismo , Solubilidad , Spodoptera/citología , Spodoptera/genética , Spodoptera/metabolismo , Temperatura , Transgenes
3.
PLoS Genet ; 16(12): e1009258, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33315951

RESUMEN

Mutations in human N-glycanase 1 (NGLY1) cause the first known congenital disorder of deglycosylation (CDDG). Patients with this rare disease, which is also known as NGLY1 deficiency, exhibit global developmental delay and other phenotypes including neuropathy, movement disorder, and constipation. NGLY1 is known to regulate proteasomal and mitophagy gene expression through activation of a transcription factor called "nuclear factor erythroid 2-like 1" (NFE2L1). Loss of NGLY1 has also been shown to impair energy metabolism, but the molecular basis for this phenotype and its in vivo consequences are not well understood. Using a combination of genetic studies, imaging, and biochemical assays, here we report that loss of NGLY1 in the visceral muscle of the Drosophila larval intestine results in a severe reduction in the level of AMP-activated protein kinase α (AMPKα), leading to energy metabolism defects, impaired gut peristalsis, failure to empty the gut, and animal lethality. Ngly1-/- mouse embryonic fibroblasts and NGLY1 deficiency patient fibroblasts also show reduced AMPKα levels. Moreover, pharmacological activation of AMPK signaling significantly suppressed the energy metabolism defects in these cells. Importantly, the reduced AMPKα level and impaired energy metabolism observed in NGLY1 deficiency models are not caused by the loss of NFE2L1 activity. Taken together, these observations identify reduced AMPK signaling as a conserved mediator of energy metabolism defects in NGLY1 deficiency and suggest AMPK signaling as a therapeutic target in this disease.


Asunto(s)
Trastornos Congénitos de Glicosilación/metabolismo , Proteínas de Drosophila/metabolismo , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/deficiencia , Proteínas Quinasas/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Células Cultivadas , Proteínas de Drosophila/genética , Drosophila melanogaster , Metabolismo Energético , Fibroblastos/metabolismo , Humanos , Ratones , Factor 1 Relacionado con NF-E2/metabolismo , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/metabolismo , Proteínas Quinasas/genética , Transducción de Señal
4.
Glycobiology ; 31(1): 8-28, 2021 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-32472127

RESUMEN

To build a complex body composed of various cell types and tissues and to maintain tissue homeostasis in the postembryonic period, animals use a small number of highly conserved intercellular communication pathways. Among these is the Notch signaling pathway, which is mediated via the interaction of transmembrane Notch receptors and ligands usually expressed by neighboring cells. Maintaining optimal Notch pathway activity is essential for normal development, as evidenced by various human diseases caused by decreased and increased Notch signaling. It is therefore not surprising that multiple mechanisms are used to control the activation of this pathway in time and space. Over the last 20 years, protein glycosylation has been recognized as a major regulatory mechanism for Notch signaling. In this review, we will provide a summary of the various types of glycan that have been shown to modulate Notch signaling. Building on recent advances in the biochemistry, structural biology, cell biology and genetics of Notch receptors and the glycosyltransferases that modify them, we will provide a detailed discussion on how various steps during Notch activation are regulated by glycans. Our hope is that the current review article will stimulate additional research in the field of Notch glycobiology and will potentially be of benefit to investigators examining the contribution of glycosylation to other developmental processes.


Asunto(s)
Polisacáridos/metabolismo , Receptores Notch/metabolismo , Animales , Glicosilación , Glicosiltransferasas/metabolismo , Humanos , Transducción de Señal
5.
Hepatology ; 71(4): 1331-1349, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31469182

RESUMEN

BACKGROUND AND AIMS: Alagille syndrome (ALGS) is a multisystem developmental disorder characterized by bile duct (BD) paucity, caused primarily by haploinsufficiency of the Notch ligand jagged1. The course of the liver disease is highly variable in ALGS. However, the genetic basis for ALGS phenotypic variability is unknown. Previous studies have reported decreased expression of the transcription factor SOX9 (sex determining region Y-box 9) in late embryonic and neonatal livers of Jag1-deficient mice. Here, we investigated the effects of altering the Sox9 gene dosage on the severity of liver disease in an ALGS mouse model. APPROACH AND RESULTS: Conditional removal of one copy of Sox9 in Jag1+/- livers impairs the biliary commitment of cholangiocytes and enhances the inflammatory reaction and liver fibrosis. Loss of both copies of Sox9 in Jag1+/- livers further worsens the phenotypes and results in partial lethality. Ink injection experiments reveal impaired biliary tree formation in the periphery of P30 Jag1+/- livers, which is improved by 5 months of age. Sox9 heterozygosity worsens the P30 biliary tree phenotype and impairs the partial recovery in 5-month-old animals. Notably, Sox9 overexpression improves BD paucity and liver phenotypes in Jag1+/- mice without ectopic hepatocyte-to-cholangiocyte transdifferentiation or long-term liver abnormalities. Notch2 expression in the liver is increased following Sox9 overexpression, and SOX9 binds the Notch2 regulatory region in the liver. Histological analysis shows a correlation between the level and pattern of SOX9 expression in the liver and outcome of the liver disease in patients with ALGS. CONCLUSIONS: Our results establish Sox9 as a dosage-sensitive modifier of Jag1+/- liver phenotypes with a permissive role in biliary development. Our data further suggest that liver-specific increase in SOX9 levels is a potential therapeutic approach for BD paucity in ALGS.


Asunto(s)
Síndrome de Alagille/genética , Síndrome de Alagille/patología , Hígado/patología , Factor de Transcripción SOX9/genética , Animales , Conductos Biliares/anomalías , Transdiferenciación Celular/genética , Niño , Preescolar , Modelos Animales de Enfermedad , Hepatocitos/citología , Heterocigoto , Humanos , Lactante , Proteína Jagged-1/genética , Hígado/anomalías , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Receptores Notch/genética , Receptores Notch/metabolismo , Índice de Severidad de la Enfermedad , Transducción de Señal
6.
PLoS Genet ; 13(4): e1006723, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28394891

RESUMEN

The Drosophila glucoside xylosyltransferase Shams xylosylates Notch and inhibits Notch signaling in specific contexts including wing vein development. However, the molecular mechanisms underlying context-specificity of the shams phenotype is not known. Considering the role of Delta-Notch signaling in wing vein formation, we hypothesized that Shams might affect Delta-mediated Notch signaling in Drosophila. Using genetic interaction studies, we find that altering the gene dosage of Delta affects the wing vein and head bristle phenotypes caused by loss of Shams or by mutations in the Notch xylosylation sites. Clonal analysis suggests that loss of shams promotes Delta-mediated Notch activation. Further, Notch trans-activation by ectopically overexpressed Delta shows a dramatic increase upon loss of shams. In agreement with the above in vivo observations, cell aggregation and ligand-receptor binding assays show that shams knock-down in Notch-expressing cells enhances the binding between Notch and trans-Delta without affecting the binding between Notch and trans-Serrate and cell surface levels of Notch. Loss of Shams does not impair the cis-inhibition of Notch by ectopic overexpression of ligands in vivo or the interaction of Notch and cis-ligands in S2 cells. Nevertheless, removing one copy of endogenous ligands mimics the effects of loss shams on Notch trans-activation by ectopic Delta. This favors the notion that trans-activation of Notch by Delta overcomes the cis-inhibition of Notch by endogenous ligands upon loss of shams. Taken together, our data suggest that xylosylation selectively impedes the binding of Notch with trans-Delta without affecting its binding with cis-ligands and thereby assists in determining the balance of Notch receptor's response to cis-ligands vs. trans-Delta during Drosophila development.


Asunto(s)
Proteínas de Homeodominio/genética , Discos Imaginales/crecimiento & desarrollo , Receptores Notch/genética , Proteínas Serrate-Jagged/genética , Factores de Transcripción/genética , Alas de Animales/crecimiento & desarrollo , Animales , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas de Homeodominio/metabolismo , Discos Imaginales/metabolismo , Ligandos , Mutación , Fenotipo , Unión Proteica , Receptores Notch/metabolismo , Proteínas Serrate-Jagged/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Alas de Animales/metabolismo , Xilosa/metabolismo
7.
Glycobiology ; 28(11): 849-859, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30169771

RESUMEN

In multicellular organisms, glycosylation regulates various developmental signaling pathways including the Notch pathway. One of the O-linked glycans added to epidermal growth factor-like (EGF) repeats in animal proteins including the Notch receptors is the xylose-xylose-glucose-O oligosaccharide. Drosophila glucoside xylosyltransferase (Gxylt) Shams negatively regulates Notch signaling in specific contexts. Since Shams adds the first xylose residue to O-glucose, its loss-of-function phenotype could be due to the loss of the first xylose, the second xylose or both. To examine the contribution of the second xylose residues to Drosophila Notch signaling, we have performed biochemical and genetic analysis on CG11388, which is the Drosophila homolog of human xyloside xylosyltransferase 1 (XXYLT1). Experiments in S2 cells indicated that similar to human XXYLT1, CG11388 can add the second xylose to xylose-glucose-O glycans. Flies lacking both copies of CG11388 (Xxylt) are viable and fertile and do not show gross phenotypes indicative of altered Notch signaling. However, genetic interaction experiments show that in sensitized genetic backgrounds with decreased or increased Notch pathway components, loss of Xxylt promotes Delta-mediated activation of Notch. Unexpectedly, we find that in such sensitized backgrounds, even loss of one copy of the fly Gxylt shams enhances Delta-mediated Notch activation. Taken together, these data indicate that while the first xylose plays a key role in tuning the Delta-mediated Notch signaling in Drosophila, the second xylose has a fine-tuning role only revealed in sensitized genetic backgrounds.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/genética , Drosophila/metabolismo , Factor de Crecimiento Epidérmico/química , Antecedentes Genéticos , Pentosiltransferasa/química , Pentosiltransferasa/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Animales , Proteínas de Drosophila/genética , Humanos , Pentosiltransferasa/genética , Receptores Notch/genética , Transducción de Señal/genética , UDP Xilosa Proteína Xilosiltransferasa
8.
J Biol Chem ; 291(31): 16348-60, 2016 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-27268051

RESUMEN

Glycosylation of the Notch receptor is essential for its activity and serves as an important modulator of signaling. Three major forms of O-glycosylation are predicted to occur at consensus sites within the epidermal growth factor-like repeats in the extracellular domain of the receptor: O-fucosylation, O-glucosylation, and O-GlcNAcylation. We have performed comprehensive mass spectral analyses of these three types of O-glycosylation on Drosophila Notch produced in S2 cells and identified peptides containing all 22 predicted O-fucose sites, all 18 predicted O-glucose sites, and all 18 putative O-GlcNAc sites. Using semiquantitative mass spectral methods, we have evaluated the occupancy and relative amounts of glycans at each site. The majority of the O-fucose sites were modified to high stoichiometries. Upon expression of the ß3-N-acetylglucosaminyltransferase Fringe with Notch, we observed varying degrees of elongation beyond O-fucose monosaccharide, indicating that Fringe preferentially modifies certain sites more than others. Rumi modified O-glucose sites to high stoichiometries, although elongation of the O-glucose was site-specific. Although the current putative consensus sequence for O-GlcNAcylation predicts 18 O-GlcNAc sites on Notch, we only observed apparent O-GlcNAc modification at five sites. In addition, we performed mass spectral analysis on endogenous Notch purified from Drosophila embryos and found that the glycosylation states were similar to those found on Notch from S2 cells. These data provide foundational information for future studies investigating the mechanisms of how O-glycosylation regulates Notch activity.


Asunto(s)
Proteínas de Drosophila , N-Acetilglucosaminiltransferasas , Mapeo Peptídico , Péptidos , Receptores Notch , Animales , Línea Celular , Proteínas de Drosophila/biosíntesis , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Fucosa/química , Fucosa/genética , Fucosa/metabolismo , Glicosilación , N-Acetilglucosaminiltransferasas/biosíntesis , N-Acetilglucosaminiltransferasas/química , N-Acetilglucosaminiltransferasas/genética , Péptidos/química , Péptidos/genética , Péptidos/metabolismo , Receptores Notch/química , Receptores Notch/genética , Receptores Notch/metabolismo
9.
Hepatology ; 63(2): 550-65, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26235536

RESUMEN

UNLABELLED: Haploinsufficiency for the Notch ligand JAG1 in humans results in an autosomal-dominant, multisystem disorder known as Alagille syndrome, which is characterized by a congenital cholangiopathy of variable severity. Here, we show that on a C57BL/6 background, jagged1 heterozygous mice (Jag1(+/-) ) exhibit impaired intrahepatic bile duct (IHBD) development, decreased SOX9 expression, and thinning of the periportal vascular smooth muscle cell (VSMC) layer, which are apparent at embryonic day 18 and the first postnatal week. In contrast, mice double heterozygous for Jag1 and the glycosyltransferase, Poglut1 (Rumi), start showing a significant improvement in IHBD development and VSMC differentiation during the first week. At P30, Jag1(+/-) mice show widespread ductular reactions and ductopenia in liver and a mild, but statistically, significant bilirubinemia. In contrast, P30 Jag1/Rumi double-heterozygous mice show well-developed portal triads around most portal veins, with no elevation of serum bilirubin. Conditional deletion of Rumi in VSMCs results in progressive arborization of the IHBD tree, whereas deletion of Rumi in hepatoblasts frequently results in an increase in the number of hepatic arteries without affecting bile duct formation. Nevertheless, removing one copy of Rumi from either VSMCs or hepatoblasts is sufficient to partially suppress the Jag1(+/-) bile duct defects. Finally, all Rumi target sites of the human JAG1 are efficiently glucosylated, and loss of Rumi in VSMCs results in increased levels of full-length JAG1 and a shorter fragment of JAG1 without affecting Jag1 messenger RNA levels. CONCLUSIONS: On a C57BL/6 background, Jag1 haploinsufficiency results in bile duct paucity in mice. Removing one copy of Rumi suppresses the Jag1(+/-) bile duct phenotype, indicating that Rumi opposes JAG1 function in the liver.


Asunto(s)
Enfermedades de los Conductos Biliares/congénito , Enfermedades de los Conductos Biliares/genética , Proteínas de Unión al Calcio/genética , Eliminación de Gen , Glucosiltransferasas/genética , Heterocigoto , Péptidos y Proteínas de Señalización Intercelular/genética , Proteínas de la Membrana/genética , Animales , Humanos , Proteína Jagged-1 , Ratones , Ratones Endogámicos C57BL , Proteínas Serrate-Jagged
10.
PLoS Genet ; 10(11): e1004795, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25412384

RESUMEN

The protein O-glucosyltransferase Rumi/POGLUT1 regulates Drosophila Notch signaling by adding O-glucose residues to the Notch extracellular domain. Rumi has other predicted targets including Crumbs (Crb) and Eyes shut (Eys), both of which are involved in photoreceptor development. However, whether Rumi is required for the function of Crb and Eys remains unknown. Here we report that in the absence of Rumi or its enzymatic activity, several rhabdomeres in each ommatidium fail to separate from one another in a Notch-independent manner. Mass spectral analysis indicates the presence of O-glucose on Crb and Eys. However, mutating all O-glucosylation sites in a crb knock-in allele does not cause rhabdomere attachment, ruling out Crb as a biologically-relevant Rumi target in this process. In contrast, eys and rumi exhibit a dosage-sensitive genetic interaction. In addition, although in wild-type ommatidia most of the Eys protein is found in the inter-rhabdomeral space (IRS), in rumi mutants a significant fraction of Eys remains in the photoreceptor cells. The intracellular accumulation of Eys and the IRS defect worsen in rumi mutants raised at a higher temperature, and are accompanied by a ∼50% decrease in the total level of Eys. Moreover, removing one copy of an endoplasmic reticulum chaperone enhances the rhabdomere attachment in rumi mutant animals. Altogether, our data suggest that O-glucosylation of Eys by Rumi ensures rhabdomere separation by promoting proper Eys folding and stability in a critical time window during the mid-pupal stage. Human EYS, which is mutated in patients with autosomal recessive retinitis pigmentosa, also harbors multiple Rumi target sites. Therefore, the role of O-glucose in regulating Eys may be conserved.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas del Ojo/genética , Glucosiltransferasas/genética , Células Fotorreceptoras/metabolismo , Retinitis Pigmentosa/genética , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Proteínas del Ojo/metabolismo , Técnicas de Sustitución del Gen , Glucosa/metabolismo , Glucosiltransferasas/metabolismo , Glicosilación , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Células Fotorreceptoras/patología , Receptores Notch/genética , Retinitis Pigmentosa/patología , Transducción de Señal/genética
11.
PLoS Genet ; 9(6): e1003547, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23754965

RESUMEN

The Notch signaling pathway controls a large number of processes during animal development and adult homeostasis. One of the conserved post-translational modifications of the Notch receptors is the addition of an O-linked glucose to epidermal growth factor-like (EGF) repeats with a C-X-S-X-(P/A)-C motif by Protein O-glucosyltransferase 1 (POGLUT1; Rumi in Drosophila). Genetic experiments in flies and mice, and in vivo structure-function analysis in flies indicate that O-glucose residues promote Notch signaling. The O-glucose residues on mammalian Notch1 and Notch2 proteins are efficiently extended by the addition of one or two xylose residues through the function of specific mammalian xylosyltransferases. However, the contribution of xylosylation to Notch signaling is not known. Here, we identify the Drosophila enzyme Shams responsible for the addition of xylose to O-glucose on EGF repeats. Surprisingly, loss- and gain-of-function experiments strongly suggest that xylose negatively regulates Notch signaling, opposite to the role played by glucose residues. Mass spectrometric analysis of Drosophila Notch indicates that addition of xylose to O-glucosylated Notch EGF repeats is limited to EGF14-20. A Notch transgene with mutations in the O-glucosylation sites of Notch EGF16-20 recapitulates the shams loss-of-function phenotypes, and suppresses the phenotypes caused by the overexpression of human xylosyltransferases. Antibody staining in animals with decreased Notch xylosylation indicates that xylose residues on EGF16-20 negatively regulate the surface expression of the Notch receptor. Our studies uncover a specific role for xylose in the regulation of the Drosophila Notch signaling, and suggest a previously unrecognized regulatory role for EGF16-20 of Notch.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster , Glucosiltransferasas/genética , Receptores Notch/genética , Xilosa/metabolismo , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Factor de Crecimiento Epidérmico/genética , Factor de Crecimiento Epidérmico/metabolismo , Glucosa/metabolismo , Glucosiltransferasas/metabolismo , Humanos , Mutación , Pentosiltransferasa/genética , Pentosiltransferasa/metabolismo , Receptores Notch/metabolismo , Secuencias Repetitivas de Aminoácido , Transducción de Señal , Xilosa/genética , UDP Xilosa Proteína Xilosiltransferasa
12.
Glycobiology ; 25(10): 1027-42, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26175457

RESUMEN

The epidermal growth factor (EGF)-like repeat is a common, evolutionarily conserved motif found in secreted proteins and the extracellular domain of transmembrane proteins. EGF repeats harbor six cysteine residues which form three disulfide bonds and help generate the three-dimensional structure of the EGF repeat. A subset of EGF repeats harbor consensus sequences for the addition of one or more specific O-glycans, which are initiated by O-glucose, O-fucose or O-N-acetylglucosamine. These glycans are relatively rare compared to mucin-type O-glycans. However, genetic experiments in model organisms and cell-based assays indicate that at least some of the glycosyltransferases involved in the addition of O-glycans to EGF repeats play important roles in animal development. These studies, combined with state-of-the-art biochemical and structural biology experiments have started to provide an in-depth picture of how these glycans regulate the function of the proteins to which they are linked. In this review, we will discuss the biological roles assigned to EGF repeat O-glycans and the corresponding glycosyltransferases. Since Notch receptors are the best studied proteins with biologically-relevant O-glycans on EGF repeats, a significant part of this review is devoted to the role of these glycans in the regulation of the Notch signaling pathway. We also discuss recently identified proteins other than Notch which depend on EGF repeat glycans to function properly. Several glycosyltransferases involved in the addition or elongation of O-glycans on EGF repeats are mutated in human diseases. Therefore, mechanistic understanding of the functional roles of these carbohydrate modifications is of interest from both basic science and translational perspectives.


Asunto(s)
Factor de Crecimiento Epidérmico/fisiología , Polisacáridos/fisiología , Animales , Factor de Crecimiento Epidérmico/química , Glicosilación , Crecimiento y Desarrollo , Humanos , Pliegue de Proteína , Estructura Terciaria de Proteína , Receptores Notch/fisiología , Secuencias Repetitivas de Aminoácido , Transducción de Señal
13.
Glycobiology ; 25(8): 836-44, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25900930

RESUMEN

N-Glycanase 1, encoded by NGLY1, catalyzes the deglycosylation of misfolded N-linked glycoproteins retrotranslocated into the cytosol. We identified nine cases with mutations in NGLY1. The patients show developmental delay, seizures, peripheral neuropathy, abnormal liver function and alacrima (absence of tears). The mutations in NGLY1 resulted in the absence of N-glycanase 1 protein in patient-derived fibroblasts. Applying a recently established cellular deglycosylation-dependent Venus fluorescence assay, we found that patient fibroblasts had dramatically reduced fluorescence, indicating a pronounced reduction in N-glycanase enzymatic activity. Using this assay, we could find no evidence of other related activities. Our findings reveal that NGLY1 mutations destroy both N-glycanase 1 protein and enzymatic activity.


Asunto(s)
Discapacidades del Desarrollo/genética , Enfermedades Hereditarias del Ojo/genética , Insuficiencia Hepática/genética , Enfermedades del Aparato Lagrimal/genética , Mutación , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/genética , Enfermedades del Sistema Nervioso Periférico/genética , Convulsiones/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Discapacidades del Desarrollo/patología , Pruebas de Enzimas , Exones , Fibroblastos/enzimología , Fibroblastos/patología , Expresión Génica , Genes Reporteros , Insuficiencia Hepática/congénito , Humanos , Enfermedades del Aparato Lagrimal/congénito , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/deficiencia , Enfermedades del Sistema Nervioso Periférico/congénito , Cultivo Primario de Células , Convulsiones/congénito
15.
Development ; 138(16): 3569-78, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21771811

RESUMEN

Mutations in Drosophila rumi result in a temperature-sensitive loss of Notch signaling. Rumi is a protein O-glucosyltransferase that adds glucose to EGF repeats with a C-X-S-X-P-C consensus sequence. Eighteen of the 36 EGF repeats in the Drosophila Notch receptor contain the consensus O-glucosylation motif. However, the contribution of individual O-glucose residues on Notch to the regulation of Notch signaling is not known. To address this issue, we carried out a mutational analysis of these glucosylation sites and determined their effects on Notch activity in vivo. Our results indicate that even though no single O-glucose mutation causes a significant decrease in Notch activity, all of the glucose residues on Notch contribute in additive and/or redundant fashions to maintain robust signaling, especially at higher temperatures. O-glucose motifs in and around the ligand-binding EGF repeats play a more important role than those in other EGF repeats of Notch. However, a single O-glucose mutation in EGF12 can be compensated by other O-glucose residues in neighboring EGF repeats. Moreover, timecourse cell aggregation experiments using a rumi null cell line indicate that a complete lack of Rumi does not affect Notch-Delta binding at high temperature. In addition, rumi fully suppresses the gain-of-function phenotype of a ligand-independent mutant form of Notch. Our data suggest that, at physiological levels of Notch, the combined effects of multiple O-glucose residues on this receptor allow productive S2 cleavage at high temperatures and thereby serve as a buffer against temperature-dependent loss of Notch signaling.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Glucosiltransferasas/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Genoma de los Insectos , Glucosa/metabolismo , Glucosiltransferasas/genética , Mutación , Receptores Notch/genética , Temperatura , Transgenes
16.
Development ; 138(10): 1925-34, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21490058

RESUMEN

Protein O-glucosylation is a conserved post-translational modification that occurs on epidermal growth factor-like (EGF) repeats harboring the C(1)-X-S-X-P-C(2) consensus sequence. The Drosophila protein O-glucosyltransferase (Poglut) Rumi regulates Notch signaling, but the contribution of protein O-glucosylation to mammalian Notch signaling and embryonic development is not known. Here, we show that mouse Rumi encodes a Poglut, and that Rumi(-/-) mouse embryos die before embryonic day 9.5 with posterior axis truncation and severe defects in neural tube development, somitogenesis, cardiogenesis and vascular remodeling. Rumi knockdown in mouse cell lines results in cellular and molecular phenotypes of loss of Notch signaling without affecting Notch ligand binding. Biochemical, cell culture and cross-species transgenic experiments indicate that a decrease in Rumi levels results in reduced O-glucosylation of Notch EGF repeats, and that the enzymatic activity of Rumi is key to its regulatory role in the Notch pathway. Genetic interaction studies show that removing one copy of Rumi in a Jag1(+/-) (jagged 1) background results in severe bile duct morphogenesis defects. Altogether, our data indicate that addition of O-glucose to EGF repeats is essential for mouse embryonic development and Notch signaling, and that Jag1-induced signaling is sensitive to the gene dosage of the protein O-glucosyltransferase Rumi. Given that Rumi(-/-) embryos show more severe phenotypes compared to those displayed by other global regulators of canonical Notch signaling, Rumi is likely to have additional important targets during mammalian development.


Asunto(s)
Desarrollo Embrionario/fisiología , Glucosiltransferasas/metabolismo , Receptores Notch/metabolismo , Anomalías Múltiples/embriología , Anomalías Múltiples/genética , Anomalías Múltiples/metabolismo , Animales , Conductos Biliares Intrahepáticos/anomalías , Conductos Biliares Intrahepáticos/metabolismo , Proteínas de Unión al Calcio/deficiencia , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Anomalías Cardiovasculares/embriología , Anomalías Cardiovasculares/genética , Anomalías Cardiovasculares/metabolismo , Línea Celular , Proteínas de Drosophila , Desarrollo Embrionario/genética , Factor de Crecimiento Epidérmico/genética , Femenino , Dosificación de Gen , Glucosiltransferasas/deficiencia , Glucosiltransferasas/genética , Péptidos y Proteínas de Señalización Intercelular/deficiencia , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteína Jagged-1 , Hígado/anomalías , Hígado/metabolismo , Masculino , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes , Ratones Transgénicos , Fenotipo , Embarazo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Serrate-Jagged , Transducción de Señal
17.
Proc Natl Acad Sci U S A ; 108(40): 16600-5, 2011 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-21949356

RESUMEN

Mutations in rumi result in a temperature-sensitive loss of Notch signaling in Drosophila. Drosophila Rumi is a soluble, endoplasmic reticulum-retained protein with a CAP10 domain that functions as a protein O-glucosyltransferase. In human and mouse genomes, three potential Rumi homologues exist: one with a high degree of identity to Drosophila Rumi (52%), and two others with lower degrees of identity but including a CAP10 domain (KDELC1 and KDELC2). Here we show that both mouse and human Rumi, but not KDELC1 or KDELC2, catalyze transfer of glucose from UDP-glucose to an EGF repeat from human factor VII. Similarly, human Rumi, but not KDELC1 or KDELC2, rescues the Notch phenotypes in Drosophila rumi clones. During characterization of the Rumi enzymes, we noted that, in addition to protein O-glucosyltransferase activity, both mammalian and Drosophila Rumi also showed significant protein O-xylosyltransferase activity. Rumi transfers Xyl or glucose to serine 52 in the O-glucose consensus sequence ( ) of factor VII EGF repeat. Surprisingly, the second serine (S53) facilitates transfer of Xyl, but not glucose, to the EGF repeat by Rumi. EGF16 of mouse Notch2, which has a diserine motif in the consensus sequence ( ), is also modified with either O-Xyl or O-glucose glycans in cells. Mutation of the second serine (S590A) causes a loss of O-Xyl but not O-glucose at this site. Altogether, our data establish dual substrate specificity for the glycosyltransferase Rumi and provide evidence that amino acid sequences of the recipient EGF repeat significantly influence which donor substrate (UDP-glucose or UDP-Xyl) is used.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/fisiología , Factor VII/metabolismo , Glucosiltransferasas/metabolismo , Pentosiltransferasa/metabolismo , Transducción de Señal/fisiología , Animales , Drosophila/genética , Proteínas de Drosophila/genética , Factor VII/genética , Glucosiltransferasas/genética , Humanos , Espectrometría de Masas , Ratones , Mutación/genética , Transducción de Señal/genética , Especificidad por Sustrato , UDP Xilosa Proteína Xilosiltransferasa
18.
Nat Cell Biol ; 8(1): 27-36, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16341207

RESUMEN

Merlin, the protein product of the Neurofibromatosis type-2 gene, acts as a tumour suppressor in mice and humans. Merlin is an adaptor protein with a FERM domain and it is thought to transduce a growth-regulatory signal. However, the pathway through which Merlin acts as a tumour suppressor is poorly understood. Merlin, and its function as a negative regulator of growth, is conserved in Drosophila, where it functions with Expanded, a related FERM domain protein. Here, we show that Drosophila Merlin and Expanded are components of the Hippo signalling pathway, an emerging tumour-suppressor pathway. We find that Merlin and Expanded, similar to other components of the Hippo pathway, are required for proliferation arrest and apoptosis in developing imaginal discs. Our genetic and biochemical data place Merlin and Expanded upstream of Hippo and identify a pathway through which they act as tumour-suppressor genes.


Asunto(s)
Apoptosis , Proliferación Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Genes de la Neurofibromatosis 2 , Proteínas de la Membrana/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Ciclo Celular , Ciclina E/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/fisiología , Péptidos y Proteínas de Señalización Intracelular , Masculino , Proteínas de la Membrana/fisiología , Mutación , Proteínas Nucleares/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/química , Transducción de Señal , Transactivadores/metabolismo , Activación Transcripcional , Proteínas Señalizadoras YAP
19.
Nat Commun ; 14(1): 5667, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37704604

RESUMEN

Intestinal barrier dysfunction leads to inflammation and associated metabolic changes. However, the relative impact of gut bacteria versus non-bacterial insults on animal health in the context of barrier dysfunction is not well understood. Here, we establish that loss of Drosophila N-glycanase 1 (Pngl) in a specific intestinal cell type leads to gut barrier defects, causing starvation and JNK overactivation. These abnormalities, along with loss of Pngl in enterocytes and fat body, result in Foxo overactivation, leading to hyperactive innate immune response and lipid catabolism and thereby contributing to lethality. Germ-free rearing of Pngl mutants rescued their developmental delay but not lethality. However, raising Pngl mutants on isocaloric, fat-rich diets partially rescued lethality. Our data indicate that Pngl functions in Drosophila larvae to establish the gut barrier, and that the lethality caused by loss of Pngl is primarily mediated through non-bacterial induction of immune and metabolic abnormalities.


Asunto(s)
Drosophila , Lipólisis , Animales , Drosophila/genética , Tejido Adiposo , Enterocitos , Lípidos
20.
bioRxiv ; 2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37066398

RESUMEN

Intestinal barrier dysfunction leads to inflammation and associated metabolic changes. However, the relative impact of infectious versus non-infectious mechanisms on animal health in the context of barrier dysfunction is not well understood. Here, we establish that loss of Drosophila N -glycanase 1 (Pngl) leads to gut barrier defects, which cause starvation and increased JNK activity. These defects result in Foxo overactivation, which induces a hyperactive innate immune response and lipid catabolism, thereby contributing to lethality associated with loss of Pngl . Notably, germ-free rearing of Pngl mutants did not rescue lethality. In contrast, raising Pngl mutants on isocaloric, fat-rich diets improved animal survival in a dosage-dependent manner. Our data indicate that Pngl functions in Drosophila larvae to establish the gut barrier, and that the immune and metabolic consequences of loss of Pngl are primarily mediated through non-infectious mechanisms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA