Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 23(15): 6852-6858, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37499230

RESUMEN

Laser sails propelled by gigawatt-scale ground-based laser arrays have the potential to reach relativistic speeds, traversing the solar system in hours and reaching nearby stars in years. Here, we describe the danger interplanetary dust poses to the survival of a laser sail during its acceleration phase. We show through multiphysics simulations how localized heating from a single optically absorbing dust particle on the sail can initiate a thermal runaway process that rapidly spreads and destroys the entire sail. We explore potential mitigation strategies, including increasing the in-plane thermal conductivity of the sail to reduce the peak temperature at hot spots and isolating the absorptive regions of the sail that can burn away individually.

2.
Langmuir ; 37(30): 9222-9231, 2021 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-34279965

RESUMEN

Functionalization of diamond surfaces with TEMPO and other surface paramagnetic species represents one approach to the implementation of novel chemical detection schemes that make use of shallow quantum color defects such as silicon-vacancy (SiV) and nitrogen-vacancy (NV) centers. Yet, prior approaches to quantum-based chemical sensing have been hampered by the absence of high-quality surface functionalization schemes for linking radicals to diamond surfaces. Here, we demonstrate a highly controlled approach to the functionalization of diamond surfaces with carboxylic acid groups via all-carbon tethers of different lengths, followed by covalent chemistry to yield high-quality, TEMPO-modified surfaces. Our studies yield estimated surface densities of 4-amino-TEMPO of approximately 1.4 molecules nm-2 on nanodiamond (varying with molecular linker length) and 3.3 molecules nm-2 on planar diamond. These values are higher than those reported previously using other functionalization methods. The ζ-potential of nanodiamonds was used to track reaction progress and elucidate the regioselectivity of the reaction between ethenyl and carboxylate groups and surface radicals.

3.
ACS Appl Mater Interfaces ; 15(9): 12545-12550, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36848224

RESUMEN

Submicrometer-thick layers of hexagonal boron nitride (hBN) exhibit high in-plane thermal conductivity and useful optical properties, and serve as dielectric encapsulation layers with low electrostatic inhomogeneity for graphene devices. Despite the promising applications of hBN as a heat spreader, the thickness dependence of its cross-plane thermal conductivity is not known, and the cross-plane phonon mean free paths (MFPs) have not been measured. We measure the cross-plane thermal conductivity of hBN flakes exfoliated from bulk crystals. We find that submicrometer thick flakes exhibit thermal conductivities up to 8.1 ± 0.5 W m-1 K-1 at 295 K, which exceeds previously reported bulk values by more than 60%. Surprisingly, the average phonon mean free path is found to be several hundred nanometers at room temperature, a factor of 5 larger than previous predictions. When planar twist interfaces are introduced into the crystal by mechanically stacking multiple thin flakes, the cross-plane thermal conductivity of the stack is found to be a factor of 7 below that of individual flakes with similar total thickness, thus providing strong evidence that phonon scattering at twist boundaries limits the maximum phonon MFPs. These results have important implications for hBN integration in nanoelectronics and improve our understanding of thermal transport in two-dimensional materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA