Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 627(8005): 783-788, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38538937

RESUMEN

Controlling the intensity of emitted light and charge current is the basis of transferring and processing information1. By contrast, robust information storage and magnetic random-access memories are implemented using the spin of the carrier and the associated magnetization in ferromagnets2. The missing link between the respective disciplines of photonics, electronics and spintronics is to modulate the circular polarization of the emitted light, rather than its intensity, by electrically controlled magnetization. Here we demonstrate that this missing link is established at room temperature and zero applied magnetic field in light-emitting diodes2-7, through the transfer of angular momentum between photons, electrons and ferromagnets. With spin-orbit torque8-11, a charge current generates also a spin current to electrically switch the magnetization. This switching determines the spin orientation of injected carriers into semiconductors, in which the transfer of angular momentum from the electron spin to photon controls the circular polarization of the emitted light2. The spin-photon conversion with the nonvolatile control of magnetization opens paths to seamlessly integrate information transfer, processing and storage. Our results provide substantial advances towards electrically controlled ultrafast modulation of circular polarization and spin injection with magnetization dynamics for the next-generation information and communication technology12, including space-light data transfer. The same operating principle in scaled-down structures or using two-dimensional materials will enable transformative opportunities for quantum information processing with spin-controlled single-photon sources, as well as for implementing spin-dependent time-resolved spectroscopies.

3.
Nano Lett ; 24(9): 2743-2750, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38393986

RESUMEN

For energy-efficient magnetic memories, switching of perpendicular magnetization by spin-orbit torque (SOT) appears to be a promising solution. This SOT switching requires the assistance of an in-plane magnetic field to break the symmetry. Here, we demonstrate the field-free SOT switching of a perpendicularly magnetized thulium iron garnet (Tm3Fe5O12, TmIG). The polarity of the switching loops, clockwise or counterclockwise, is determined by the direction of the initial current pulses, in contrast with field-assisted switching where the polarity is controlled by the direction of the magnetic field. From Brillouin light scattering, we determined the Dzyaloshinskii-Moriya interaction (DMI) induced by the Pt-TmIG interface. We will discuss the possible origins of field-free switching and the roles of the interfacial DMI and cubic magnetic anisotropy of TmIG. This discussion is substantiated by magnetotransport, Kerr microscopy, and micromagnetic simulations. Our observation of field-free electrical switching of a magnetic insulator is an important milestone for low-power spintronic devices.

4.
Nano Lett ; 23(15): 6785-6791, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37524333

RESUMEN

The hallmark of spintronics has been the ability of spin-orbit interactions to convert a charge current into a spin current and vice versa, mainly in the bulk of heavy metal thin films. Here, we demonstrate how a light metal interface profoundly affects both the nature of spin-orbit torques and its efficiency in terms of damping-like (HDL) and field-like (HFL) effective fields in ultrathin Co films. We measure unexpectedly HFL/HDL ratios much larger than 1 by inserting a nanometer-thin Al metallic layer in Pt|Co|Al|Pt as compared to a similar stacking, including Cu as a reference. From our modeling, these results evidence the existence of large Rashba interaction at the Co|Al interface generating a giant HFL, which is not expected from a metallic interface. The occurrence of such enhanced torques from an interfacial origin is further validated by demonstrating current-induced magnetization reversal showing a significant decrease of the critical current for switching.

5.
Phys Rev Lett ; 128(5): 057701, 2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35179915

RESUMEN

We report on carrier dynamics in a spin photodiode based on a ferromagnetic-metal-GaAs tunnel junction. We show that the helicity-dependent current is determined not only by the electron spin polarization and spin asymmetry of the tunneling but in great part by a dynamical factor resulting from the competition between tunneling and recombination in the semiconductor, as well as by a specific quantity: the charge polarization of the photocurrent. The two latter factors can be efficiently controlled through an electrical bias. Under longitudinal magnetic field, we observe a strong increase of the signal arising from inverted Hanle effect, which is a fingerprint of its spin origin. Our approach represents a radical shift in the physical description of this family of emerging spin devices.

6.
Nano Lett ; 20(1): 395-401, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31859513

RESUMEN

Spintronics entails the generation, transport, manipulation and detection of spin currents, usually in hybrid architectures comprising interfaces whose impact on performance is detrimental. In addition, how spins are generated and detected is generally material specific and determined by the electronic structure. Here, we demonstrate spin current generation, transport and electrical detection, all within a single non-magnetic material system: a SrTiO3 two-dimensional electron gas (2DEG) with Rashba spin-orbit coupling. We show that the spin current is generated from a charge current by the 2D spin Hall effect, transported through a channel and reconverted into a charge current by the inverse 2D spin Hall effect. Furthermore, by adjusting the Fermi energy with a gate voltage we tune the generated and detected spin polarization and relate it to the complex multiorbital band structure of the 2DEG. We discuss the leading mechanisms of the spin-charge interconversion processes and argue for the potential of quantum oxide materials for future all-electrical low-power spin-based logic.

7.
Nano Lett ; 19(1): 90-99, 2019 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-30472859

RESUMEN

Due to the difficulty of growing high-quality semiconductors on ferromagnetic metals, the study of spin diffusion transport in Si was limited to lateral geometry devices. In this work, by using an ultrahigh-vacuum wafer-bonding technique, we have successfully fabricated metal-semiconductor-metal CoFeB/MgO/Si/Pt vertical structures. We hereby demonstrate pure spin-current injection and transport in the perpendicular current flow geometry over a distance larger than 2 µm in n-type Si at room temperature. In those experiments, a pure propagating spin current is generated via ferromagnetic resonance spin pumping and converted into a measurable voltage by using the inverse spin Hall effect occurring in the top Pt layer. A systematic study varying both Si and MgO thicknesses reveals the important role played by the localized states at the MgO-Si interface for the spin-current generation. Proximity effects involving indirect exchange interactions between the ferromagnet and the MgO-Si interface states appears to be a prerequisite to establishing the necessary out-of-equilibrium spin population in Si under the spin-pumping action.

8.
Nano Lett ; 18(4): 2381-2386, 2018 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-29517243

RESUMEN

The emission of circularly polarized light from a single quantum dot relies on the injection of carriers with well-defined spin polarization. Here we demonstrate single dot electroluminescence (EL) with a circular polarization degree up to 35% at zero applied magnetic field. The injection of spin-polarized electrons is achieved by combining ultrathin CoFeB electrodes on top of a spin-LED device with p-type InGaAs quantum dots in the active region. We measure an Overhauser shift of several microelectronvolts at zero magnetic field for the positively charged exciton (trion X+) EL emission, which changes sign as we reverse the injected electron spin orientation. This is a signature of dynamic polarization of the nuclear spins in the quantum dot induced by the hyperfine interaction with the electrically injected electron spin. This study paves the way for electrical control of nuclear spin polarization in a single quantum dot without any external magnetic field.

9.
Adv Mater ; 36(36): e2404174, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38896111

RESUMEN

Orbitronic devices operate by manipulating orbitally polarized currents. Recent studies have shown that these orbital currents can be excited by femtosecond laser pulses in a ferromagnet such as Ni and converted into ultrafast charge currents via orbital-to-charge conversion. However, the terahertz emission from orbitronic terahertz emitters based on Ni is still much weaker than that of the typical spintronic terahertz emitter. Here, this work reports a more efficient light-induced generation of orbital current from a CoPt alloy, and the terahertz emission from CoPt/Cu/MgO is comparable to that of benchmark spintronic terahertz emitters. By varying the composition of the CoPt alloy, the thickness of Cu, and the capping layer, this work confirms that THz emission primarily originates from the orbital accumulation generated within CoPt, propagating through Cu, followed by subsequent orbital-to-charge conversion due to the inverse orbital Rashba-Edelstein effect at the Cu/MgO interface. This study provides strong evidence for the efficient orbital current generation in CoPt alloy, paving the way for efficient orbital terahertz emitters.

10.
Nat Commun ; 15(1): 2043, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448561

RESUMEN

Orbitronics is based on the use of orbital currents as information carriers. Orbital currents can be generated from the conversion of charge or spin currents, and inversely, they could be converted back to charge or spin currents. Here we demonstrate that orbital currents can also be generated by femtosecond light pulses on Ni. In multilayers associating Ni with oxides and nonmagnetic metals such as Cu, we detect the orbital currents by their conversion into charge currents and the resulting terahertz emission. We show that the orbital currents extraordinarily predominate the light-induced spin currents in Ni-based systems, whereas only spin currents can be detected with CoFeB-based systems. In addition, the analysis of the time delays of the terahertz pulses leads to relevant information on the velocity and propagation length of orbital carriers. Our finding of light-induced orbital currents and our observation of their conversion into charge currents opens new avenues in orbitronics, including the development of orbitronic terahertz devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA