Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Foods ; 12(2)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36673429

RESUMEN

Sialic acids (Sias) are acidic monosaccharides and red meat is a notable dietary source of Sia for humans. Among the Sias, N-acetylneuraminic acid (Neu5Ac) and 2-keto-3-deoxy-D-glycero-D-galacto-2-nonulosonic acid (KDN) play multiple roles in immunity and brain cognition. On the other hand, N-glycolylneuraminic acid (Neu5Gc) is a non-human Sia capable of potentiating cancer and inflammation in the human body. However, their expression within the animal kingdom remains unknown. We determined Neu5Ac and KDN in skeletal muscle and organs across a range (n = 9) of species using UHPLC and found that (1) caprine skeletal muscle expressed the highest Neu5Ac (661.82 ± 187.96 µg/g protein) following by sheep, pig, dog, deer, cat, horse, kangaroo and cattle; (2) Among organs, kidney contained the most Neu5Ac (1992−3050 µg/g protein) across species; (3) ~75−98% of total Neu5Ac was conjugated, except for in dog and cat muscle (54−58%); (4) <1% of total Sia was KDN, in which ~60−100% was unconjugated, with the exception of sheep liver and goat muscle (~12−25%); (5) Neu5Ac was the major Sia in almost all tested organs. This study guides consumers to the safest red meat relating to Neu5Ac and Neu5Gc content, though the dog and cat meat are not conventional red meat globally.

2.
Animals (Basel) ; 12(19)2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36230349

RESUMEN

Chitosan oligosaccharide (COS) is derived through deacetylation of chitin from crustacean shells. Previous studies reported the benefits of COS to gut microbiota, immunity and health of host species. In this study, 120 pregnant composite ewes were subdivided into treatment and control groups in duplicate. COS was supplemented via a loose lick to provide an estimated intake of COS @100−600 mg/d/ewe for five weeks pre-lambing until lamb marking. Body weight was recorded pre-treatment for ewes, and at lamb marking and weaning for both ewes and lambs. Serum immunity markers immunoglobulin G (IgG), immunoglobulin M (IgM), immunoglobulin A (IgA), secretory immunoglobulin A (sIgA), interleukin (IL)-2, IL10 and faecal sIgA were determined for ewes and lambs at lamb marking and weaning by enzyme-linked immunosorbent assay (ELISA). We found that COS can be incorporated in sheep feed without compromising palatability. Maternal COS supplementation did not influence the body weight of ewes or lambs. It did, however, significantly increase the concentrations of serum IL2 in ewes at marking and weaning (p < 0.001). In lambs, COS also significantly increased the IL2 concentration at making (p = 0.018) and weaning (p = 0.029) and serum IgM at marking (p < 0.001). No significant effect was observed in the concentration of any other immune marker or cytokine in either ewes or lambs. In conclusion, maternal COS supplementation significantly modulated some immunity markers in both ewes and lambs. The short duration of maternal COS supplementation and optimal seasonal conditions during the trial may explain the lack of significant body weight in ewes and lambs from the COS supplementation.

3.
Animals (Basel) ; 11(8)2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34438776

RESUMEN

Swine are one of the most important agricultural species for human food production. Given the significant disease challenges confronting commercial pig farming systems, introduction of a new feed additive that can enhance animal performance by improving growth and immune status represents a major opportunity. One such candidate is sialic acid (Sia), a diverse family of nine-carbon acidic sugar, present in various organs and body fluid, as well as an essential structural and functional constituent of brain ganglioside of humans and animals. Sias are key monosaccharide and biomarker of sialylated milk oligosaccharide (Sia-MOS's), sialylated glycoproteins and glycolipids in milk and all vertebrate cells. Sias accomplish many critical endogenous functions by virtue of their physiochemical properties and via recognition by intrinsic receptors. Human milk sialylated glycoconjugates (Sia-GC's) are bioactive compounds known to act as prebiotics that promote gut microbiota development, gut maturation, pathogen resistance, immunomodulation, anti-inflammation and neurodevelopment. However, the importance of Sia in pig health, especially in the growth, development, immunity of developing piglet and in pig production remains unknown. This review aims to critically discuss the current status of knowledge of the biology and nutritional role of Sia and Sia-GC's on health of both female sow and newborn piglets.

4.
Foods ; 10(2)2021 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-33669968

RESUMEN

Human milk oligosaccharides (HMOs) are the third most abundant solid component after lactose and lipids of breast milk. All mammal milk contains soluble oligosaccharides, including neutral milk oligosaccharides (NMOs) without sialic acid (Sia) moieties and acidic oligosaccharides or sialylated milk oligosaccharides (SMOs) with Sia residues at the end of sugar chains. The structural, biological diversity, and concentration of milk oligosaccharides in mammalian milk are significantly different among species. HMOs have multiple health benefits for newborns, including development of immune system, modification of the intestinal microbiota, anti-adhesive effect against pathogens, and brain development. Most infant formulas lack oligosaccharides which resemble HMOs. Formula-fed infants perform poorly across physical and psychological wellbeing measures and suffer health disadvantages compared to breast-fed infants due to the differences in the nutritional composition of breast milk and infant formula. Of these milk oligosaccharides, SMOs are coming to the forefront of research due to the beneficial nature of Sia. This review aims to critically discuss the current state of knowledge of the biology and role of SMOs in human milk, infant formula milks, and milk from several other species on gut and brain health of human and animal offspring.

5.
Food Chem ; 343: 128439, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33127222

RESUMEN

Red meat-derived sialic acid (Sia), N-glycolylneuraminic acid (Neu5Gc), promotes the risk of carcinoma and inflammation. Expression in skeletal muscle and organs across animal species remains unknown. We measured Neu5Gc in skeletal muscle and organ tissues from nine species using UHPLC and found that: (1) neu5Gc concentration in skeletal muscle was highest in goats (166 ± 48.7 µg/g protein), followed by cattle, pig, sheep, horse, cat and deer: >75% was conjugated. No Neu5Gc was detected in kangaroo and dog muscles; (2) total Neu5Gc in organ meats was generally about 2-54% higher than in muscle. Surprisingly Neu5Gc was absent in seven organs of female deer; (3) nine commercial ovine meat cuts contained similar Neu5Gc levels. Thus, red meat Neu5Gc concentration is tissue and species-specific and absent in muscle and organ tissue of some species. Our study provides guidelines for animal meat preferences for consumers and sheds light on the functionality of Neu5Gc.


Asunto(s)
Músculo Esquelético/metabolismo , Ácidos Neuramínicos/metabolismo , Animales , Gatos , Bovinos , Ciervos , Perros , Femenino , Caballos , Humanos , Macropodidae , Ácidos Neuramínicos/análisis , Carne Roja/análisis , Ovinos , Especificidad de la Especie , Porcinos
6.
Anim Nutr ; 6(2): 134-142, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32542193

RESUMEN

Chitosan oligosaccharides (COS) are the hydrolyzed product of chitosan and have multifunctional health benefits. The objective of this study was to elucidate the effect of COS as a dietary supplement to gilts on their productivity and health and that of their litters. Gilts were randomly assigned to either a treatment (n = 30) or control group (n = 30). The treatment gilts were fed a standard dry sow ration supplemented with COS at 0.12 and 0.24 g/gilt per d during gestation and lactation, respectively, and the control group was fed the standard dry sow ration only. The body weight, reproductive performance, milk production and litter size for each gilt and body weight of corresponding litters were recorded. The serum immunoglobulins (IgA, IgG, IgM) and secretory immunoglobulin A (sIgA) concentrations of gilts and piglets and fecal sIgA concertation of gilts were measured by Enzyme-linked immunosorbent assay (ELISA). Our study showed that maternal COS supplementation 1) significantly increased gilt body weight in late pregnancy (P < 0.05), 2) significantly increased milk production of gilts at different stages (d 1, 3, 7 and 19) of lactation (P < 0.05), 3) significantly increased body weight gain of piglets at weaning (P < 0.05), 4) significantly increased the serum concentrations of IgM and sIgA in piglets, and sIgA in fecal sample of gilts (P < 0.05), and 5) tended to increase the pregnancy success rate (P > 0.05) in the treatment group compared to the control group. These results suggest that maternal COS intervention in gilts can improve gilt milk production, piglet pre-weaning growth and immunity parameters in both gilts and piglets.

7.
Transl Anim Sci ; 3(4): 1410-1415, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32704905

RESUMEN

Lactoferrin (LF) is a sialylated iron-binding glycoprotein, occurring in several biological secretions like milk, saliva, and seminal fluids and is a major component of a mammalian innate immune system. It plays multiple protective roles against large group of microorganisms and performs anti-inflammatory and anti-cancer activities. The concentration of serum LF in gilt (primiparous sow) and their piglets remains unknown. We determined serum LF concentration in gilts during gestation and lactation to that of 19-d-old piglets, including sow-fed and formula-fed piglets using enzyme-linked immunosorbent assay (ELISA). We found that the concentration of serum LF in gilts varied during gestation (0.77 ± 0.10 µg/mL) and lactation (0.62 ± 0.11 µg/mL). The mean concentration of serum LF in gilts (0.72 ± 0.06 µg/mL) was significantly higher than that of piglets (0.42 ± 0.07 µg/mL, P = 0.004). Additionally, a marginal significant difference (P =0.06) was observed for serum LF concentration in sow-fed piglets (0.42 ± 0.03 µg/mL) at 19 d old compared to that of formula-fed piglets (0.33 ± 0.04 µg/mL) at 37 d old. This study provides noble information regarding the serum LF concentration in the healthy gilts and piglets and thereby the data can be used as a standard reference point for future studies on the role of LF in pig reproduction.

8.
Sci Rep ; 8(1): 4688, 2018 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-29549280

RESUMEN

Milk oligosaccharides (MOs) are complex carbohydrates with multifunctional health benefits for the neonate. Poor reproductive performance in primiparous gilts limits their productivity. Changes in the structure and abundance of porcine MO (PMOs) through lactation with parity remains unknown and may explain superior new-born growth in litters from multiparous sows relative to gilts. We report 55 PMOs structures, of which 25 are new (17 sialylated and 8 neutral). Their incidence in gilt and sow colostrum was almost identical (53 vs. 54), but not in transitional milk (48 vs. 53) nor mature milk (41 vs. 47). These PMOs including neutral-, sialyl- and fucosyl- MOs in colostrum were more abundant in the gilt than the sow, but always decreased during lactation. Structural diversity decreased, although fucosylated MO were conserved. In conclusion, high diversity and levels of MO in porcine milk is parity dependent. Given the similarity between porcine and human MO profiles, our findings may help define key roles for MOs as potential dietary additives to improve growth of neonates from first pregnancies in both human and sows.


Asunto(s)
Calostro/química , Lactancia/metabolismo , Oligosacáridos/análisis , Crianza de Animales Domésticos , Animales , Cromatografía Líquida de Alta Presión , Femenino , Paridad , Embarazo , Sus scrofa , Porcinos , Espectrometría de Masas en Tándem
9.
PLoS One ; 12(10): e0185817, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29023467

RESUMEN

Lactoferrin (LF), a sialylated iron-binding glycoprotein, performs multiple beneficial functions including modulating immunity and improves neurodevelopment, health and growth performance. Maternal LF intervention for gilts (first parity sows) on the performance of gilts and their offspring remains unknown. In the current study gilts were fed with a commercial pig feed supplemented with 1g LF /day (treatment group) or 1g milk casein/day (control group) from day 1 post mating throughout pregnancy and lactation for about 135 days. The milk production and body weight gain was monitored. The immunoglobulin concentrations in the serum of gilts and piglets were measured using ELISA. Our study showed that maternal LF supplementation to the gilt (1) significantly increased milk production at different time points (day 1, 3, 7 and 19) of lactation compared to the control (p<0.001); (2) significantly increased body weight gain of their piglets during the first 19 days of life compared to the control group (p<0.05); (3) tended to increase pregnancy rate, litter size and birth weight, number of piglets born alive, and decrease the number of dead and intrauterine growth restriction (IUGR) piglets; (4) significantly increased the concentration of serum IgA in gilt and serum sIgA in piglet (p<0.05). In summary, maternal Lf intervention in gilts can improve milk production, pig production and serum IgA and sIgA levels, and therefore plays a key role in shaping the performance of their progeny.


Asunto(s)
Alimentación Animal , Peso Corporal/efectos de los fármacos , Lactancia/efectos de los fármacos , Lactoferrina/farmacología , Embarazo/efectos de los fármacos , Animales , Caseínas/farmacología , Femenino , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA