Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 127(18): 183603, 2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34767390

RESUMEN

We introduce the concept of a squeezed laser, in which a squeezed cavity mode develops a macroscopic photonic occupation due to stimulated emission. Above the lasing threshold, the emitted light retains both the spectral purity of a laser and the photon correlations characteristic of quadrature squeezing. Our proposal, implementable in optical setups, relies on a combination of the parametric driving of the cavity and the excitation by a broadband squeezed vacuum to achieve lasing behavior in a squeezed cavity mode. The squeezed laser can find applications that go beyond those of standard lasers thanks to the squeezed character, such as the direct application in Michelson interferometry beyond the standard quantum limit, or its use in atomic metrology.

2.
Phys Rev Lett ; 125(19): 195301, 2020 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-33216562

RESUMEN

Spin-charge separation (SCS) is a striking manifestation of strong correlations in low-dimensional quantum systems, whereby a fermion splits into separate spin and charge excitations that travel at different speeds. Here, we demonstrate that periodic driving enables control over SCS in a Hubbard system near half filling. In one dimension, we predict analytically an exotic regime where charge travels slower than spin and can even become "frozen," in agreement with numerical calculations. In two dimensions, the driving slows both charge and spin and leads to complex interferences between single-particle and pair-hopping processes.

3.
Phys Rev Lett ; 125(5): 053602, 2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32794849

RESUMEN

We demonstrate how virtual scattering of laser photons inside a cavity via two-photon processes can induce controllable long-range electron interactions in two-dimensional materials. We show that laser light that is red (blue) detuned from the cavity yields attractive (repulsive) interactions whose strength is proportional to the laser intensity. Furthermore, we find that the interactions are not screened effectively except at very low frequencies. For realistic cavity parameters, laser-induced heating of the electrons by inelastic photon scattering is suppressed and coherent electron interactions dominate. When the interactions are attractive, they cause an instability in the Cooper channel at a temperature proportional to the square root of the driving intensity. Our results provide a novel route for engineering electron interactions in a wide range of two-dimensional materials including AB-stacked bilayer graphene and the conducting interface between LaAlO_{3} and SrTiO_{3}.

4.
Phys Rev Lett ; 123(26): 260401, 2019 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-31951440

RESUMEN

Nonstationary longtime dynamics was recently observed in a driven two-component Bose-Einstein condensate coupled to an optical cavity [N. Dogra, M. Landini, K. Kroeger, L. Hruby, T. Donner, and T. Esslinger, arXiv:1901.05974] and analyzed in mean-field theory. We solve the underlying model in the thermodynamic limit and show that this system is always dynamically unstable-even when mean-field theory predicts stability. Instabilities always occur in higher-order correlation functions leading to squeezing and entanglement induced by cavity dissipation. The dynamics may be understood as the formation of a dissipative time crystal. We use perturbation theory for finite system sizes to confirm the nonstationary behavior.

5.
Phys Rev Lett ; 123(13): 133601, 2019 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-31697538

RESUMEN

We investigate long-range pairing interactions between ultracold fermionic atoms confined in an optical lattice which are mediated by the coupling to a cavity. In the absence of other perturbations, we find three degenerate pairing symmetries for a two-dimensional square lattice. By tuning a weak local atomic interaction via a Feshbach resonance or by tuning a weak magnetic field, the superfluid system can be driven from a topologically trivial s wave to topologically ordered, chiral superfluids containing Majorana edge states. Our work points out a novel path towards the creation of exotic superfluid states by exploiting the competition between long-range and short-range interactions.

6.
Phys Rev Lett ; 122(13): 133602, 2019 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-31012600

RESUMEN

We investigate electron paring in a two-dimensional electron system mediated by vacuum fluctuations inside a nanoplasmonic terahertz cavity. We show that the structured cavity vacuum can induce long-range attractive interactions between current fluctuations which lead to pairing in generic materials with critical temperatures in the low-kelvin regime for realistic parameters. The induced state is a pair-density wave superconductor which can show a transition from a fully gapped to a partially gapped phase-akin to the pseudogap phase in high-T_{c} superconductors. Our findings provide a promising tool for engineering intrinsic electron interactions in two-dimensional materials.

7.
Phys Rev Lett ; 120(9): 093201, 2018 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-29547326

RESUMEN

We present an experimental demonstration of converting a microwave field to an optical field via frequency mixing in a cloud of cold ^{87}Rb atoms, where the microwave field strongly couples to an electric dipole transition between Rydberg states. We show that the conversion allows the phase information of the microwave field to be coherently transferred to the optical field. With the current energy level scheme and experimental geometry, we achieve a photon-conversion efficiency of ∼0.3% at low microwave intensities and a broad conversion bandwidth of more than 4 MHz. Theoretical simulations agree well with the experimental data, and they indicate that near-unit efficiency is possible in future experiments.

8.
Phys Rev Lett ; 117(21): 213603, 2016 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-27911559

RESUMEN

We show how to implement topological or Thouless pumping of interacting photons in one-dimensional nonlinear resonator arrays by simply modulating the frequency of the resonators periodically in space and time. The interplay between the interactions and the adiabatic modulations enables robust transport of Fock states with few photons per site. We analyze the transport mechanism via an effective analytic model and study its topological properties and its protection to noise. We conclude by a detailed study of an implementation with existing circuit-QED architectures.

9.
Phys Rev Lett ; 111(23): 233003, 2013 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-24476267

RESUMEN

We show that the dipole-dipole interaction between three identical Rydberg atoms can give rise to bound trimer states. The microscopic origin of these states is fundamentally different from Efimov physics. Two stable trimer configurations exist where the atoms form the vertices of an equilateral triangle in a plane perpendicular to a static electric field. The triangle edge length typically exceeds R≈2 µm, and each configuration is twofold degenerate due to Kramers degeneracy. The depth of the potential wells and the triangle edge length can be controlled by external parameters. We establish the Borromean nature of the trimer states, analyze the quantum dynamics in the potential wells, and describe methods for their production and detection.

10.
Phys Rev Lett ; 110(17): 170402, 2013 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-23679687

RESUMEN

We show that sizable Abelian and non-Abelian gauge fields arise in the relative motion of two dipole-dipole interacting Rydberg atoms. Our system exhibits two magnetic monopoles for adiabatic motion in one internal two-atom state. These monopoles occur at a characteristic distance between the atoms that is of the order of one micron. The deflection of the relative motion due to the Lorentz force gives rise to a clear signature of the effective magnetic field. In addition, we consider nonadiabatic transitions between two near-degenerate internal states and show that the associated gauge fields are non-Abelian. We present quantum mechanical calculations of this synthetic spin-orbit coupling and show that it realizes a velocity-dependent beam splitter.

11.
Nat Commun ; 13(1): 7445, 2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36460651

RESUMEN

Theoretical research into many-body quantum systems has mostly focused on regular structures which have a small, simple unit cell and where a vanishingly small fraction of the pairs of the constituents directly interact. Motivated by advances in control over the pairwise interactions in many-body simulators, we determine the fate of spin systems on more general, arbitrary graphs. Placing the minimum possible constraints on the underlying graph, we prove how, with certainty in the thermodynamic limit, such systems behave like a single collective spin. We thus understand the emergence of complex many-body physics as dependent on 'exceptional', geometrically constrained structures such as the low-dimensional, regular ones found in nature. Within the space of dense graphs we identify hitherto unknown exceptions via their inhomogeneity and observe how complexity is heralded in these systems by entanglement and highly non-uniform correlation functions. Our work paves the way for the discovery and exploitation of a whole class of geometries which can host uniquely complex phases of matter.

12.
Nat Comput Sci ; 2(1): 30-37, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38177703

RESUMEN

Understanding turbulence is key to our comprehension of many natural and technological flow processes. At the heart of this phenomenon lies its intricate multiscale nature, describing the coupling between different-sized eddies in space and time. Here we analyze the structure of turbulent flows by quantifying correlations between different length scales using methods inspired from quantum many-body physics. We present the results for interscale correlations of two paradigmatic flow examples, and use these insights along with tensor network theory to design a structure-resolving algorithm for simulating turbulent flows. With this algorithm, we find that the incompressible Navier-Stokes equations can be accurately solved even when reducing the number of parameters required to represent the velocity field by more than one order of magnitude compared to direct numerical simulation. Our quantum-inspired approach provides a pathway towards conducting computational fluid dynamics on quantum computers.

13.
Nat Commun ; 10(1): 1730, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30988312

RESUMEN

The assumption that quantum systems relax to a stationary state in the long-time limit underpins statistical physics and much of our intuitive understanding of scientific phenomena. For isolated systems this follows from the eigenstate thermalization hypothesis. When an environment is present the expectation is that all of phase space is explored, eventually leading to stationarity. Notable exceptions are decoherence-free subspaces that have important implications for quantum technologies and have so far only been studied for systems with a few degrees of freedom. Here we identify simple and generic conditions for dissipation to prevent a quantum many-body system from ever reaching a stationary state. We go beyond dissipative quantum state engineering approaches towards controllable long-time non-stationarity typically associated with macroscopic complex systems. This coherent and oscillatory evolution constitutes a dissipative version of a quantum time crystal. We discuss the possibility of engineering such complex dynamics with fermionic ultracold atoms in optical lattices.

14.
J Phys Condens Matter ; 30(27): 275501, 2018 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-29809166

RESUMEN

We show that efficient norm-conserving pseudopotentials for electronic structure calculations can be obtained from a polynomial Ansatz for the potential. Our pseudopotential is a polynomial of degree ten in the radial variable and fulfils the same smoothness conditions imposed by the Troullier-Martins method (TM) (1991 Phys. Rev. B 43 1993) where pseudopotentials are represented by a polynomial of degree twenty-two. We compare our method to the TM approach in electronic structure calculations for diamond and iron in the bcc structure and find that the two methods perform equally well in calculations of the total energy. However, first and second derivatives of the total energy with respect to atomic coordinates converge significantly faster with the plane wave cutoff if the standard TM potentials are replaced by the pseudopotentials introduced here.

15.
Nature ; 442(7099): 147-9, 2006 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-16838008
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA