Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Sensors (Basel) ; 23(5)2023 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-36904798

RESUMEN

Modern vehicle communication development is a continuous process in which cutting-edge security systems are required. Security is a main problem in the Vehicular Ad Hoc Network (VANET). Malicious node detection is one of the critical issues found in the VANET environment, with the ability to communicate and enhance the mechanism to enlarge the field. The vehicles are attacked by malicious nodes, especially DDoS attack detection. Several solutions are presented to overcome the issue, but none are solved in a real-time scenario using machine learning. During DDoS attacks, multiple vehicles are used in the attack as a flood on the targeted vehicle, so communication packets are not received, and replies to requests do not correspond in this regard. In this research, we selected the problem of malicious node detection and proposed a real-time malicious node detection system using machine learning. We proposed a distributed multi-layer classifier and evaluated the results using OMNET++ and SUMO with machine learning classification using GBT, LR, MLPC, RF, and SVM models. The group of normal vehicles and attacking vehicles dataset is considered to apply the proposed model. The simulation results effectively enhance the attack classification with an accuracy of 99%. Under LR and SVM, the system achieved 94 and 97%, respectively. The RF and GBT achieved better performance with 98% and 97% accuracy values, respectively. Since we have adopted Amazon Web Services, the network's performance has improved because training and testing time do not increase when we include more nodes in the network.

2.
Environ Monit Assess ; 195(10): 1207, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37707632

RESUMEN

There is a growing concern about inappropriate waste disposal and its negative impact on human health and the environment. The objective of this study is to understand household waste segregation intention considering psychological, institutional, and situational factors simultaneously. Insights into the motivations of household waste segregation drivers may assist in a better knowledge of how to pursue the most efficient and effective initiatives. For this purpose, data from a representative sample comprising 849 households is obtained from the twin cities of Islamabad and Rawalpindi (Pakistan). The empirical analysis employs a Structural Equation Modeling (SEM) approach, showing that policy instruments have significant direct and indirect impacts on households' segregation intentions. The results highlight that government policy instruments strengthen personal and perceived norms for waste segregation intentions, resulting in an external intervention that would encourage intrinsic motivation. Therefore, policy actions become the main entry point for initiating waste segregation behavior. Public policy must continue to emphasize waste segregation since it may help resource recovery. This is imperative because the environment is a shared resource, and its conservation increases social welfare.


Asunto(s)
Monitoreo del Ambiente , Intención , Humanos , Pakistán , Ciudades , Análisis de Clases Latentes , Política Pública
3.
Sensors (Basel) ; 22(23)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36501861

RESUMEN

In vehicular ad hoc networks (VANETs), content pre-caching is a significant technology that improves network performance and lowers network response delay. VANET faces network congestion when multiple requests for the same content are generated. Location-based dependency requirements make the system more congested. Content pre-caching is an existing challenge in VANET; pre-caching involves the content's early delivery to the requested vehicles to avoid network delays and control network congestion. Early content prediction saves vehicles from accidents and road disasters in urban environments. Periodic data dissemination without considering the state of the road and surrounding vehicles are considered in this research. The content available at a specified time poses considerable challenges in VANET for content delivery. To address these challenges, we propose a machine learning-based, zonal/context-aware-equipped content pre-caching strategy in this research. The proposed model improves content placement and content management in the pre-caching mode for VANET. Content caching is achieved through machine learning, which significantly improves content prediction by pre-caching the content early to the desired vehicles that are part of the zone. In this paper, three algorithms are presented, the first is zone selection using the customized algorithm, the second is the content dissemination algorithm, and the third is the content pre-caching decision algorithm using supervised machine learning that improves the early content prediction accuracy by 99.6%. The cache hit ratio for the proposed technique improves by 13% from the previous techniques. The prediction accuracy of the proposed technique is compared with CCMP, MLCP, and PCZS+PCNS on the number of vehicles from 10 to 150, with an improved average of 16%. Finally, the average delay reduces over time compared with the state-of-the-art techniques of RPSS, MLCP, CCMP, and PCZS+PCNS. Finally, the average delay shows that the proposed method effectively reduces the delay when the number of nodes increases. The proposed solution improves the content delivery request while comparing it with existing techniques. The results show improved pre-caching in VANET to avoid network congestion.


Asunto(s)
Desastres , Inteligencia , Aprendizaje Automático , Algoritmos , Concienciación
4.
Sensors (Basel) ; 21(21)2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34770279

RESUMEN

This paper presents an enhanced PDR-BLE compensation mechanism for improving indoor localization, which is considerably resilient against variant uncertainties. The proposed method of ePDR-BLE compensation mechanism (EPBCM) takes advantage of the non-requirement of linearization of the system around its current state in an unscented Kalman filter (UKF) and Kalman filter (KF) in smoothing of received signal strength indicator (RSSI) values. In this paper, a fusion of conflicting information and the activity detection approach of an object in an indoor environment contemplates varying magnitude of accelerometer values based on the hidden Markov model (HMM). On the estimated orientation, the proposed approach remunerates the inadvertent body acceleration and magnetic distortion sensor data. Moreover, EPBCM can precisely calculate the velocity and position by reducing the position drift, which gives rise to a fault in zero-velocity and heading error. The developed EPBCM localization algorithm using Bluetooth low energy beacons (BLE) was applied and analyzed in an indoor environment. The experiments conducted in an indoor scenario shows the results of various activities performed by the object and achieves better orientation estimation, zero velocity measurements, and high position accuracy than other methods in the literature.

5.
Sensors (Basel) ; 21(5)2021 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-33652773

RESUMEN

Blockchain technology has recently inspired remarkable attention due to its unique features, such as privacy, accountability, immutability, and anonymity, to name of the few. In contrast, core functionalities of most Internet of Things (IoT) resources make them vulnerable to security threats. The IoT devices, such as smartphones and tablets, have limited capacity in terms of network, computing, and storage, which make them easier for vulnerable threats. Furthermore, a massive amount of data produced by the IoT devices, which is still an open challenge for the existing platforms to process, analyze, and unearth underlying patterns to provide convenience environment. Therefore, a new solution is required to ensure data accountability, improve data privacy and accessibility, and extract hidden patterns and useful knowledge to provide adequate services. In this paper, we present a secure fitness framework that is based on an IoT-enabled blockchain network integrated with machine learning approaches. The proposed framework consists of two modules: a blockchain-based IoT network to provide security and integrity to sensing data as well as an enhanced smart contract enabled relationship and inference engine to discover hidden insights and useful knowledge from IoT and user device network data. The enhanced smart contract aims to support users with a practical application that provides real-time monitoring, control, easy access, and immutable logs of multiple devices that are deployed in several domains. The inference engine module aims to unearth underlying patterns and useful knowledge from IoT environment data, which helps in effective decision making to provide convenient services. For experimental analysis, we implement an intelligent fitness service that is based on an enhanced smart contract enabled relationship and inference engine as a case study where several IoT fitness devices are used to securely acquire user personalized fitness data. Furthermore, a real-time inference engine investigates user personalized data to discover useful knowledge and hidden insights. Based on inference engine knowledge, a recommendation model is developed to recommend a daily and monthly diet, as well as a workout plan for better and improved body shape. The recommendation model aims to facilitate a trainer formulating effective future decisions of trainee's health in terms of a diet and workout plan. Lastly, for performance analysis, we have used Hyperledger Caliper to access the system performance in terms of latency, throughput, resource utilization, and varying orderer and peers nodes. The analysis results imply that the design architecture is applicable for resource-constrained IoT blockchain platform and it is extensible for different IoT scenarios.

6.
Sensors (Basel) ; 21(23)2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34884165

RESUMEN

Pakistan receives Direct Normal Irradiation (DNI) exceeding 2000 kWh/m²/annum on approximately 83% of its land, which is very suitable for photovoltaic production. This energy can be easily utilized in conjunction with other renewable energy resources to meet the energy demands and reduce the carbon footprint of the country. In this research, a hybrid renewable energy solution based on a nearly Zero Energy Building (nZEB) model is proposed for a university facility. The building in consideration has a continuous flow of water through its water delivery vertical pipelines. A horizontal-axis spherical helical turbine is designed in SolidWorks and is analyzed through a computational fluid dynamics (CFD) analysis in ANSYS Fluent 18.1 based on the K-epsilon turbulent model. Results obtained from ANSYS Fluent have shown that a 24 feet vertical channel with a water flow of 0.2309 m3/s and velocity of 12.66 m/s can run the designed hydroelectric turbine, delivering 168 W of mechanical power at 250 r.p.m. Based on the turbine, a hybrid renewable energy system (HRES) comprising photovoltaic and hydroelectric power is modelled and analyzed in HOMER Pro software. Among different architectures, it was found that architecture with hydroelectric and photovoltaic energy provided the best COE of $0.09418.

7.
Sensors (Basel) ; 21(13)2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34282786

RESUMEN

Restricted abilities of mobile devices in terms of storage, computation, time, energy supply, and transmission causes issues related to energy optimization and time management while processing tasks on mobile phones. This issue pertains to multifarious mobile device-related dimensions, including mobile cloud computing, fog computing, and edge computing. On the contrary, mobile devices' dearth of storage and processing power originates several issues for optimal energy and time management. These problems intensify the process of task retaining and offloading on mobile devices. This paper presents a novel task scheduling algorithm that addresses energy consumption and time execution by proposing an energy-efficient dynamic decision-based method. The proposed model quickly adapts to the cloud computing tasks and energy and time computation of mobile devices. Furthermore, we present a novel task scheduling server that performs the offloading computation process on the cloud, enhancing the mobile device's decision-making ability and computational performance during task offloading. The process of task scheduling harnesses the proposed empirical algorithm. The outcomes of this study enable effective task scheduling wherein energy consumption and task scheduling reduces significantly.


Asunto(s)
Algoritmos , Nube Computacional , Computadores , Computadoras de Mano
8.
Sensors (Basel) ; 20(16)2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32784667

RESUMEN

Internet of Things is advancing, and the augmented role of smart navigation in automating processes is at its vanguard. Smart navigation and location tracking systems are finding increasing use in the area of the mission-critical indoor scenario, logistics, medicine, and security. A demanding emerging area is an Indoor Localization due to the increased fascination towards location-based services. Numerous inertial assessments unit-based indoor localization mechanisms have been suggested in this regard. However, these methods have many shortcomings pertaining to accuracy and consistency. In this study, we propose a novel position estimation system based on learning to the prediction model to address the above challenges. The designed system consists of two modules; learning to prediction module and position estimation using sensor fusion in an indoor environment. The prediction algorithm is attached to the learning module. Moreover, the learning module continuously controls, observes, and enhances the efficiency of the prediction algorithm by evaluating the output and taking into account the exogenous factors that may have an impact on its outcome. On top of that, we reckon a situation where the prediction algorithm can be applied to anticipate the accurate gyroscope and accelerometer reading from the noisy sensor readings. In the designed system, we consider a scenario where the learning module, based on Artificial Neural Network, and Kalman filter are used as a prediction algorithm to predict the actual accelerometer and gyroscope reading from the noisy sensor reading. Moreover, to acquire data, we use the next-generation inertial measurement unit, which contains a 3-axis accelerometer and gyroscope data. Finally, for the performance and accuracy of the proposed system, we carried out numbers of experiments, and we observed that the proposed Kalman filter with learning module performed better than the traditional Kalman filter algorithm in terms of root mean square error metric.

9.
Sensors (Basel) ; 20(8)2020 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-32294989

RESUMEN

Over the past several years, many healthcare applications have been developed to enhancethe healthcare industry. Recent advancements in information technology and blockchain technologyhave revolutionized electronic healthcare research and industry. The innovation of miniaturizedhealthcare sensors for monitoring patient vital signs has improved and secured the human healthcaresystem. The increase in portable health devices has enhanced the quality of health-monitoringstatus both at an activity/fitness level for self-health tracking and at a medical level, providing moredata to clinicians with potential for earlier diagnosis and guidance of treatment. When sharingpersonal medical information, data security and comfort are essential requirements for interactionwith and collection of electronic medical records. However, it is hard for current systems to meetthese requirements because they have inconsistent security policies and access control structures.The new solutions should be directed towards improving data access, and should be managed bythe government in terms of privacy and security requirements to ensure the reliability of data formedical purposes. Blockchain paves the way for a revolution in the traditional pharmaceuticalindustry and benefits from unique features such as privacy and transparency of data. In this paper,we propose a novel platform for monitoring patient vital signs using smart contracts based onblockchain. The proposed system is designed and developed using hyperledger fabric, which isan enterprise-distributed ledger framework for developing blockchain-based applications. Thisapproach provides several benefits to the patients, such as an extensive, immutable history log, andglobal access to medical information from anywhere at any time. The Libelium e-Health toolkitis used to acquire physiological data. The performance of the designed and developed system isevaluated in terms of transaction per second, transaction latency, and resource utilization usinga standard benchmark tool known as Hyperledger Caliper. It is found that the proposed systemoutperforms the traditional health care system for monitoring patient data.


Asunto(s)
Cadena de Bloques , Internet de las Cosas , Monitoreo Fisiológico/métodos , Signos Vitales , Algoritmos , Atención a la Salud , Registros Electrónicos de Salud , Hospitales , Humanos , Tecnología de Sensores Remotos
10.
Sensors (Basel) ; 19(18)2019 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-31547395

RESUMEN

The navigation system has been around for the last several years. Recently, the emergence of miniaturized sensors has made it easy to navigate the object in an indoor environment. These sensors give away a great deal of information about the user (location, posture, communication patterns, etc.), which helps in capturing the user's context. Such information can be utilized to create smarter apps from which the user can benefit. A challenging new area that is receiving a lot of attention is Indoor Localization, whereas interest in location-based services is also rising. While numerous inertial measurement unit-based indoor localization techniques have been proposed, these techniques have many shortcomings related to accuracy and consistency. In this article, we present a novel solution for improving the accuracy of indoor navigation using a learning to perdition model. The design system tracks the location of the object in an indoor environment where the global positioning system and other satellites will not work properly. Moreover, in order to improve the accuracy of indoor navigation, we proposed a learning to prediction model-based artificial neural network to improve the prediction accuracy of the prediction algorithm. For experimental analysis, we use the next generation inertial measurement unit (IMU) in order to acquired sensing data. The next generation IMU is a compact IMU and data acquisition platform that combines onboard triple-axis sensors like accelerometers, gyroscopes, and magnetometers. Furthermore, we consider a scenario where the prediction algorithm is used to predict the actual sensor reading from the noisy sensor reading. Additionally, we have developed an artificial neural network-based learning module to tune the parameter of alpha and beta in the alpha-beta filter algorithm to minimize the amount of error in the current sensor readings. In order to evaluate the accuracy of the system, we carried out a number of experiments through which we observed that the alpha-beta filter with a learning module performed better than the traditional alpha-beta filter algorithm in terms of RMSE.

11.
RSC Adv ; 14(28): 20365-20389, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38919284

RESUMEN

The recent advancements in utilizing organocatalysts for the synthesis of organic compounds have been described in this review by focusing on their simplicity, effectiveness, reproducibility, and high selectivity which lead to excellent product yields. The organocatalytic methods for various derivatives, such as indoles, pyrazolones, anthrone-functionalized benzylic amines, maleimide, polyester, phthalimides, dihydropyrimidin, heteroaryls, N-aryl benzimidazoles, stilbenoids, quinazolines, quinolines, and oxazolidinones have been specifically focused. The review provides more understanding by delving into potential reaction mechanisms. We anticipate that this collection of data and findings on successful synthesis of diverse compound derivatives will serve as valuable resources and stimulating current and future research efforts in organocatalysis and industrial chemistry.

12.
Healthcare (Basel) ; 11(10)2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37239779

RESUMEN

Fibroids of the uterus are a common benign tumor affecting women of childbearing age. Uterine fibroids (UF) can be effectively treated with earlier identification and diagnosis. Its automated diagnosis from medical images is an area where deep learning (DL)-based algorithms have demonstrated promising results. In this research, we evaluated state-of-the-art DL architectures VGG16, ResNet50, InceptionV3, and our proposed innovative dual-path deep convolutional neural network (DPCNN) architecture for UF detection tasks. Using preprocessing methods including scaling, normalization, and data augmentation, an ultrasound image dataset from Kaggle is prepared for use. After the images are used to train and validate the DL models, the model performance is evaluated using different measures. When compared to existing DL models, our suggested DPCNN architecture achieved the highest accuracy of 99.8 percent. Findings show that pre-trained deep-learning model performance for UF diagnosis from medical images may significantly improve with the application of fine-tuning strategies. In particular, the InceptionV3 model achieved 90% accuracy, with the ResNet50 model achieving 89% accuracy. It should be noted that the VGG16 model was found to have a lower accuracy level of 85%. Our findings show that DL-based methods can be effectively utilized to facilitate automated UF detection from medical images. Further research in this area holds great potential and could lead to the creation of cutting-edge computer-aided diagnosis systems. To further advance the state-of-the-art in medical imaging analysis, the DL community is invited to investigate these lines of research. Although our proposed innovative DPCNN architecture performed best, fine-tuned versions of pre-trained models like InceptionV3 and ResNet50 also delivered strong results. This work lays the foundation for future studies and has the potential to enhance the precision and suitability with which UF is detected.

13.
ACS Omega ; 8(39): 36460-36470, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37810682

RESUMEN

In the present research work, a selenium N-heterocyclic carbene (Se-NHC) complex/adduct was synthesized and characterized by using different analytical methods including FT-IR, 1HNMR, and 13CNMR. The antifungal activity of the Se-NHC complex against Aspergillus flavus (A. flavus) fungus was investigated with disc diffusion assay. Moreover, the biochemical changes occurring in this fungus due to exposure of different concentrations of the in-house synthesized compound are characterized by surface-enhanced Raman spectroscopy (SERS) and are illustrated in the form of SERS spectral peaks. SERS analysis yields valuable information about the probable mechanisms responsible for the antifungal effects of the Se-NHC complex. As demonstrated by the SERS spectra, this Se-NHC complex caused denaturation and conformational changes in the proteins as well as decomposition of the fungal cell membrane. The SERS spectra were analyzed using two chemometric tools such as principal component analysis (PCA) and partial least-squares discriminant analysis (PLS-DA). The fungal samples' SERS spectra were differentiated using PCA, while various groups of spectra were discriminated with ultrahigh sensitivity (98%), high specificity (99.7%), accuracy (100%), and area under the receiver operating characteristic curve (87%) using PLS-DA.

14.
RSC Adv ; 13(50): 35292-35304, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38053679

RESUMEN

In the present study, Raman spectroscopy (RS) along with density functional theory (DFT) calculations have been performed for the successful characterization and confirmation of the formation of three different selenium-based N-heterocyclic carbene (NHC) complexes from their respective salts. For this purpose, mean RS features and DFT calculations of different ligands and their respective selenium NHC complexes are compared. The identified characteristic RS and DFT features, of each of these ligands and their selenium complexes, show that the polarizability of benzimidazolium rings increases after complex formation with selenium. This has been shown by the enhanced intensity of the associated Raman peaks, therefore, confirming the formation of newly formed bonds. The complex formation is also confirmed by the identification of several new peaks in the spectra of complexes and these Raman bands were absent in the spectra of the ligands. Moreover, Raman spectral data sets are analyzed using a multivariate data analysis technique of Principal Component Analysis (PCA) to observe the efficiency of the RS analysis. The results presented in this study have proved the RS technique, along with DFT, an undoubtedly fast approach for the confirmation of synthesis of selenium based NHC-complexes.

15.
Heliyon ; 7(6): e07327, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34307925

RESUMEN

Municipal solid waste (MSW) management has emerged as a major problem for modern societies in recent decades. An optimal waste management system is essential to prevent the pollution burden and associated health related issues. This study carries out an empirical evaluation of the illness caused by inadequate solid waste management in the metropolitan of Rawalpindi-Islamabad. The model is based on utility-maximizing consumer behavior and predicted probability of disease in the household is estimated by employing "seemingly uncorrelated bivariate probit model". Primary data obtained through multistage random sampling that comprises of 849 respondents. The findings show that irregular waste disposal sites in the vicinity of residences cause illness. The key findings indicate that distance from dumpsites and use of contaminated water adversely affect the health outcomes. Furthermore, the results show that respondents were unable to engage in defensive activities due to a lack of awareness. Oft-times, the waste is dumped in illegal sites that is burnt thus causing excessive air and ground water pollution. The results shed light on the respondents' understanding of the negative consequences of excessive waste disposal and study suggests measures that motivate households to engage in defensive activities through effective campaigns and capacity building programmes that ensure sustainable solid waste management.

16.
Artículo en Inglés | MEDLINE | ID: mdl-33920996

RESUMEN

Improper management of municipal waste has become a growing concern globally due to its impact on the environment, health, and overall living conditions of households in cities. Waste production has increased because households do not adopt waste management practices that ensure sustainability. Previous studies on household waste management often considered socio-economic aspects and overlooked the environmental and behavioral factors influencing the disposal practices and health status. This study adopted four constructs, defensive attitude, environmental knowledge, environmental quality, and waste disposal, by employing a structural equation modeling approach to explore research objectives. Data from 849 households of the Islamabad-Rawalpindi metropolitan was collected by using a multi-stage sampling technique. The structural model results showed that the two constructs, environmental knowledge and defensive behavior, positively affect household health status. The most significant health-related considerations are waste disposal and environmental quality, both of which negatively impact health status and do not support our hypothesis. The results provide valuable perspectives to enable households to engage actively in waste management activities. The findings indicate that understanding the intentions of household health status drivers can assist policymakers and agencies in promoting an efficient and successful community programmes related to sustainable solid waste management by allowing them to foster how the desired behavior can be achieved.


Asunto(s)
Eliminación de Residuos , Administración de Residuos , Ciudades , Análisis de Clases Latentes , Pakistán , Residuos Sólidos/análisis
17.
Heliyon ; 7(4): e06707, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33898829

RESUMEN

The present study develops an integrated assessment model (IAM) for food security under climate change for South Asia. For IAM, initially, an econometric model is estimated that identifies the impact of climate change on crop yields, using the historical relationships between temperature, precipitation, and the production of cereals. Subsequently, future projections have been collected for temperature and precipitation from climate models of the Coupled Model Inter-comparison Project Phase 5 (CMIP5), and the previous econometric model is applied to obtain the implied future cereal yields changes. Then, the yield variations are fed into a multiregional Global Trade Analysis Project (GTAP) model, calibrated to the GTAP 9 database, taking the form of decreases in factor-augmenting productivity of the grains sector. Further, the present study evaluates the effects of climate change on an individual South Asian country. The results indicate that change in climate decreases food production, increases food prices, decreases food consumption, and thus affects the welfare. Trade and fiscal policy responses are investigated to combat the problem of food security. It is revealed that these two policies fail to compensate climate change damage in all the selected South Asian countries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA