Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Clin Chem ; 67(8): 1122-1132, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34120169

RESUMEN

BACKGROUND: Multi-gene panel sequencing using next-generation sequencing (NGS) methods is a key tool for genomic medicine. However, with an estimated 140 000 genomic tests available, current system inefficiencies result in high genetic-testing costs. Reduced testing costs are needed to expand the availability of genomic medicine. One solution to improve efficiency and lower costs is to calculate the most cost-effective set of panels for a typical pattern of test requests. METHODS: We compiled rare diseases, associated genes, point prevalence, and test-order frequencies from a representative laboratory. We then modeled the costs of the relevant steps in the NGS process in detail. Using a simulated annealing-based optimization procedure, we determined panel sets that were more cost-optimal than whole exome sequencing (WES) or clinical exome sequencing (CES). Finally, we repeated this methodology to cost-optimize pharmacogenomics (PGx) testing. RESULTS: For rare disease testing, we show that an optimal choice of 4-6 panels, uniquely covering genes that comprise 95% of the total prevalence of monogenic diseases, saves $257-304 per sample compared with WES, and $66-135 per sample compared with CES. For PGx, we show that the optimal multipanel solution saves $6-7 (27%-40%) over a single panel covering all relevant gene-drug associations. CONCLUSIONS: Laboratories can reduce costs using the proposed method to obtain and run a cost-optimal set of panels for specific test requests. In addition, payers can use this method to inform reimbursement policy.


Asunto(s)
Farmacogenética , Enfermedades Raras , Pruebas Genéticas/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Enfermedades Raras/genética , Secuenciación del Exoma
2.
J Chem Inf Model ; 51(4): 788-806, 2011 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-21446748

RESUMEN

Several efficient correspondence graph-based algorithms for determining the maximum common substructure (MCS) of a pair of molecules have been published in the literature. The extension of the problem to three or more molecules is however nontrivial; heuristics used to increase the efficiency in the two-molecule case are either inapplicable to the many-molecule case or do not provide significant speedups. Our specific algorithmic contribution is two-fold. First, we show how the correspondence graph approach for the two-molecule case can be generalized to obtain an algorithm that is guaranteed to find the optimum connected MCS of multiple molecules, and that runs fast on most families of molecules using a new divide-and-conquer strategy that has hitherto not been reported in this context. Second, we provide a characterization of those compound families for which the algorithm might run slowly, along with a heuristic for speeding up computations on these families. We also extend the above algorithm to a heuristic algorithm to find the disconnected MCS of multiple molecules and to an algorithm for clustering molecules into groups, with each group sharing a substantial MCS. Our methods are flexible in that they provide exquisite control on various matching criteria used to define a common substructure.


Asunto(s)
Algoritmos , Inteligencia Artificial , Estructura Molecular , Reconocimiento de Normas Patrones Automatizadas/métodos , Análisis por Conglomerados , Análisis por Apareamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA