RESUMEN
This study presents an exploration of the chemical space around derivatives of 3-benzamidopyrazine-2-carboxamides, previously identified as potent antimycobacterial compounds with predicted binding to mycobacterial prolyl-transfer RNA synthetase. New urea derivatives (Series-1) were generally inactive, probably due to their preference for cis-trans conformation (confirmed by density functional theory calculations and experimentally by nuclear overhauser effect spectroscopy NMR). Series-2 (3-benzamidopyrazine-2-carboxamides with disubstituted benzene ring) demonstrated that substituents larger than fluorine are not tolerated in the ortho position of the benzene ring. This series brought two new compounds (21: R = 2-F, 4-Cl and 22: R = 2-F, 4-Br) with in vitro activity against Mycobacterium tuberculosis H37Rv as well as multidrug-resistant clinical isolates, with minimum inhibitory concentration ranging from 6.25 to 25 µg/mL. The lactone-type derivatives 4H-pyrazino[2,3-d][1,3]oxazin-4-ones (Series-3) were inactive, but solvent stability studies of compound 29 indicated that they might be developed to usable lactone prodrugs of inhibitors of mycobacterial aspartate decarboxylase (PanD).
Asunto(s)
Antituberculosos , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis , Relación Estructura-Actividad , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/enzimología , Antituberculosos/farmacología , Antituberculosos/química , Antituberculosos/síntesis química , Estructura Molecular , Aminoacil-ARNt Sintetasas/antagonistas & inhibidores , Aminoacil-ARNt Sintetasas/metabolismo , Pirazinas/farmacología , Pirazinas/química , Pirazinas/síntesis química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Relación Dosis-Respuesta a DrogaRESUMEN
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) is the number one cause of deaths due to a single infectious agent worldwide. The treatment of TB is lengthy and often complicated by the increasing drug resistance. New compounds with new mechanisms of action are therefore needed. We present the design, synthesis, and biological evaluation of pyrazine-based inhibitors of a prominent antimycobacterial drug target - mycobacterial methionine aminopeptidase 1 (MtMetAP1). The inhibitory activities of the presented compounds were evaluated against the MtMetAP1a isoform, and all derivatives were tested against a broad spectrum of myco(bacteria) and fungi. The cytotoxicity of the compounds was also investigated using Hep G2 cell lines. Overall, high inhibition of the isolated enzyme was observed for 3-substituted N-(thiazol-2-yl)pyrazine-2-carboxamides, particularly when the substituent was represented by 2-substituted benzamide. The extent of inhibition was strongly dependent on the used metal cofactor. The highest inhibition was seen in the presence of Ni2+. Several compounds also showed mediocre in vitro potency against Mtb (both Mtb H37Ra and H37Rv). Despite the structural similarities of bacterial and fungal MetAP1 to mycobacterial MtMetAP1, title compounds did not exert antibacterial nor antifungal activity. The reasons behind the higher activity of 2-substituted benzamido derivatives, as well as the correlation of enzyme inhibition with the in vitro growth inhibition activity is discussed.
Asunto(s)
Aminopeptidasas/antagonistas & inhibidores , Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Pirazinas/farmacología , Aminopeptidasas/metabolismo , Antituberculosos , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Mycobacterium tuberculosis/enzimología , Pirazinas/síntesis química , Pirazinas/química , Relación Estructura-ActividadRESUMEN
The yeasts of the genus Candida are among the most clinically significant fungal pathogenic agents. One of the unique features of the Candida species' pathogenicity is their ability to form biofilms. Generally, infections caused by biofilm-forming microorganisms tend to have chronic course and are difficult to treat. This fact highlights the need to search for drugs with anti-biofilm activities. At present, there are variety of protocols for performing antifungal anti-biofilm activity testing in which fundamental differences, especially in the choice of cultivation media for biofilm formation, can be noted. In our study, we focused on the effect of four different culture media on biofilm biomass formation in ten Candida spp. strains. With emphasis placed on clinical significance, strains of the C. albicans species were predominantly included in this study. Based on our results, we can conclude that the availability of other components in the culture media, such as amino acids or proteins, and not just the commonly mentioned glucose availability, helps promote the transition of Candida yeasts into a sessile form and leads to in vitro robust biofilm formation. We revealed that biofilm formation in C. albicans strains was enhanced, especially in media supplemented with fetal bovine serum (FBS). The nutritionally balanced cultivation medium with 10 g/L glucose and 10% (v/v) FBS evidently showed the most significant benefit for in vitro biofilm production in C. albicans strains.
Asunto(s)
Candida albicans , Candida , Antifúngicos , Biopelículas , Biomasa , Medios de CultivoRESUMEN
The search for novel antimycobacterial drugs is a matter of urgency, since tuberculosis is still one of the top ten causes of death from a single infectious agent, killing more than 1.4 million people worldwide each year. Nine Amaryllidaceae alkaloids (AAs) of various structural types have been screened for their antimycobacterial activity. Unfortunately, all were considered inactive, and thus a pilot series of aromatic esters of galanthamine, 3-O-methylpancracine, vittatine and maritidine were synthesized to increase biological activity. The semisynthetic derivatives of AAs were screened for their in vitro antimycobacterial activity against Mycobacterium tuberculosis H37Ra and two other mycobacterial strains (M. aurum, M. smegmatis) using a modified Microplate Alamar Blue Assay. The most active compounds were also studied for their in vitro hepatotoxicity on the hepatocellular carcinoma cell line HepG2. In general, the derivatization of the original AAs was associated with a significant increase in antimycobacterial activity. Several pilot derivatives were identified as compounds with micromolar MICs against M. tuberculosis H37Ra. Two derivatives of galanthamine, 1i and 1r, were selected for further structure optimalization to increase the selectivity index.
Asunto(s)
Alcaloides de Amaryllidaceae/síntesis química , Antibacterianos/síntesis química , Mycobacterium tuberculosis/efectos de los fármacos , Alcaloides de Amaryllidaceae/efectos adversos , Alcaloides de Amaryllidaceae/farmacología , Antibacterianos/efectos adversos , Antibacterianos/farmacología , Células Hep G2 , Humanos , Pruebas de Sensibilidad MicrobianaRESUMEN
According to the World Health Organization, tuberculosis is still in the top ten causes of death from a single infectious agent, killing more than 1.7 million people worldwide each year. The rising resistance developed by Mycobacterium tuberculosis against currently used antituberculars is an imperative to develop new compounds with potential antimycobacterial activity. As a part of our continuous research on structural derivatives of the first-line antitubercular pyrazinamide, we have designed, prepared, and assessed the in vitro whole cell growth inhibition activity of forty-two novel 5-alkylamino-N-phenylpyrazine-2-carboxamides with various length of the alkylamino chain (propylamino to octylamino) and various simple substituents on the benzene ring. Final compounds were tested against Mycobacterium tuberculosis H37Ra and four other mycobacterial strains (M. aurum, M. smegmatis, M. kansasii, M. avium) in a modified Microplate Alamar Blue Assay. We identified several candidate molecules with micromolar MIC against M. tuberculosis H37Ra and low in vitro cytotoxicity in HepG2 cell line, for example, N-(4-hydroxyphenyl)-5-(pentylamino)pyrazine-2-carboxamide (3c, MIC = 3.91 µg/mL or 13.02 µM, SI > 38) and 5-(heptylamino)-N-(p-tolyl)pyrazine-2-carboxamide (4e, MIC = 0.78 µg/mL or 2.39 µM, SI > 20). In a complementary screening, we evaluated the in vitro activity against bacterial and fungal strains of clinical importance. We observed no antibacterial activity and sporadic antifungal activity against the Candida genus.
Asunto(s)
Antituberculosos/química , Antituberculosos/farmacología , Pirazinamida/química , Pirazinas/química , Antituberculosos/síntesis química , Antituberculosos/aislamiento & purificación , Diseño de Fármacos , Desarrollo de Medicamentos , Humanos , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/efectos de los fármacos , Relación Estructura-ActividadRESUMEN
Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis (Mtb), each year causing millions of deaths. In this article, we present the synthesis and biological evaluations of new potential antimycobacterial compounds containing a fragment of the first-line antitubercular drug pyrazinamide (PZA), coupled with methyl or ethyl esters of selected amino acids. The antimicrobial activity was evaluated on a variety of (myco)bacterial strains, including Mtb H37Ra, M. smegmatis, M. aurum, Staphylococcus aureus, Pseudomonas aeruginosa, and fungal strains, including Candida albicans and Aspergillus flavus. Emphasis was placed on the comparison of enantiomer activities. None of the synthesized compounds showed any significant activity against fungal strains, and their antibacterial activities were also low, the best minimum inhibitory concentration (MIC) value was 31.25 µM. However, several compounds presented high activity against Mtb. Overall, higher activity was seen in derivatives containing Ê-amino acids. Similarly, the activity seems tied to the more lipophilic compounds. The most active derivative contained phenylglycine moiety (PC-á´ /Ê-Pgl-Me, MIC < 1.95 µg/mL). All active compounds possessed low cytotoxicity and good selectivity towards Mtb. To the best of our knowledge, this is the first study comparing the activities of the á´ - and Ê-amino acid derivatives of pyrazinamide as potential antimycobacterial compounds.
Asunto(s)
Aminoácidos/farmacología , Antibacterianos/farmacología , Antituberculosos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Pirazinamida/farmacología , Tuberculosis/tratamiento farmacológico , Aminoácidos/química , Aspergillus flavus/efectos de los fármacos , Candida albicans/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cromatografía Liquida , Cromatografía de Gases y Espectrometría de Masas , Células Hep G2 , Humanos , Concentración de Iones de Hidrógeno , Espectroscopía de Resonancia Magnética , Pruebas de Sensibilidad Microbiana , Mycobacterium smegmatis/efectos de los fármacos , Rotación Óptica , Pseudomonas aeruginosa/efectos de los fármacos , Pirazinamida/química , Staphylococcus aureus/efectos de los fármacosRESUMEN
One of the pathways for the delivery of virulence effector molecules into the extracellular environment of Candida albicans relies on the release of membrane-bound carriers which are called extracellular vesicles (EVs). Only a few studies aimed at investigating Candida albicans extracellular vesicles protein cargo and its potential contribution to the pathogenesis of C. albicans infections have been conducted to date. In this study, we mainly focused on a search for proteins with a demonstrated linkage to pathogenesis in EVs isolated from two C. albicans strains, the model strain ATCC 90028 and the clinical isolate from a woman suffering from vulvovaginal candidiasis. For the purpose of mimicking one of many hostile conditions during a host-pathogen interaction, C. albicans strains in a nutrient-limited medium were cultivated. We have hypothesized that this unfavourable, stressful condition could contribute to the induction of virulence effector molecules being released at a more extensive rate. In conclusion, 34 proteins with an undisputed linkage to C. albicans pathogenesis were detected in the extracellular vesicle cargoes of both strains. In case of the clinical isolate strain, no unique virulence-associated proteins were detected. In the C. albicans ATCC 90028 model strain, three unique proteins were detected, namely: agglutinin-like protein 3 (Als3), secreted aspartic protease 8 (Sap8) and cell surface superoxide dismutase [Cu-Zn] 6 (Sod6).
Asunto(s)
Candida albicans/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas Fúngicas/metabolismo , Factores de Virulencia/metabolismo , Candida albicans/crecimiento & desarrollo , Medios de Cultivo/química , Humanos , Transporte de ProteínasRESUMEN
We report the design, synthesis, and in vitro antimicrobial activity of a series of N-substituted 3-aminopyrazine-2-carboxamides with free amino groups in position 3 on the pyrazine ring. Based on various substituents on the carboxamidic moiety, the series is subdivided into benzyl, alkyl, and phenyl derivatives. The three-dimensional structures of the title compounds were predicted using energy minimization and low mode molecular dynamics under AMBER10:EHT forcefield. Compounds were evaluated for antimycobacterial, antibacterial, and antifungal activities in vitro. The most active compound against Mycobacterium tuberculosis H37Rv (Mtb) was 3-amino-N-(2,4-dimethoxyphenyl)pyrazine-2-carboxamide (17, MIC = 12.5 µg/mL, 46 µM). Antimycobacterial activity against Mtb and M. kansasii along with antibacterial activity increased among the alkyl derivatives with increasing the length of carbon side chain. Antibacterial activity was observed for phenyl and alkyl derivatives, but not for benzyl derivatives. Antifungal activity was observed in all structural subtypes, mainly against Trichophyton interdigitale and Candida albicans. The four most active compounds (compounds 10, 16, 17, 20) were evaluated for their in vitro cytotoxicity in HepG2 cancer cell line; only compound 20 was found to exert some level of cytotoxicity. Compounds belonging to the current series were compared to previously published, structurally related compounds in terms of antimicrobial activity to draw structure activity relationships conclusions.
Asunto(s)
Antibacterianos/síntesis química , Antibacterianos/farmacología , Pirazinas/síntesis química , Pirazinas/farmacología , Antibacterianos/química , Antifúngicos/farmacología , Bacterias/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Hongos/efectos de los fármacos , Células Hep G2 , Humanos , Pruebas de Sensibilidad Microbiana , Conformación Molecular , Pirazinas/químicaRESUMEN
We prepared a series of substituted N-(pyrazin-2-yl)benzenesulfonamides as an attempt to investigate the effect of different linkers connecting pyrazine to benzene cores on antimicrobial activity when compared to our previous compounds of amide or retro-amide linker type. Only two compounds, 4-amino-N-(pyrazin-2-yl)benzenesulfonamide (MIC = 6.25 µg/mL, 25 µM) and 4-amino-N-(6-chloropyrazin-2-yl)benzenesulfonamide (MIC = 6.25 µg/mL, 22 µM) exerted good antitubercular activity against M. tuberculosis H37Rv. However, they were excluded from the comparison as they-unlike the other compounds-possessed the pharmacophore for the inhibition of folate pathway, which was proven by docking studies. We performed target fishing, where we identified matrix metalloproteinase-8 as a promising target for our title compounds that is worth future exploration.
Asunto(s)
Antiinfecciosos/síntesis química , Antiinfecciosos/farmacología , Sulfonamidas/síntesis química , Sulfonamidas/farmacología , Antiinfecciosos/química , Antituberculosos/síntesis química , Antituberculosos/química , Antituberculosos/farmacología , Fenómenos Químicos , Técnicas de Química Sintética , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Mycobacterium tuberculosis/efectos de los fármacos , Relación Estructura-Actividad , Sulfonamidas/química , BencenosulfonamidasRESUMEN
Aminodehalogenation of 3-chloropyrazine-2-carboxamide with variously substituted benzylamines yielded a series of fifteen 3-benzylaminopyrazine-2-carboxamides. Four compounds possessed in vitro whole cell activity against Mycobacterium tuberculosis H37Rv that was at least equivalent to that of the standard pyrazinamide. MIC values ranged from 6 to 42 µM. The best MIC (6 µM) was displayed by 3-[(4-methylbenzyl)amino]pyrazine-2-carboxamide (8) that also showed low cytotoxicity in the HepG2 cell line (IC50 ≥ 250 µM). Only moderate activity against Enterococcus faecalis and Staphylococcus aureus was observed. No activity was detected against any of tested fungal strains. Molecular docking with mycobacterial enoyl-ACP reductase (InhA) was performed to investigate the possible target of the prepared compounds. Active compounds shared common binding interactions of known InhAinhibitors. Antimycobacterial activity of the title compounds was compared to the previously published benzylamino-substituted pyrazines with differing substitution on the pyrazine core (carbonitrile moiety). The title series possessed comparable activity and lower cytotoxicity than molecules containing a carbonitrile group on the pyrazine ring.
Asunto(s)
Antiinfecciosos/síntesis química , Antiinfecciosos/farmacología , Pirazinamida/síntesis química , Pirazinamida/farmacología , Amidas/química , Antibacterianos/síntesis química , Antibacterianos/farmacología , Antifúngicos/síntesis química , Antifúngicos/farmacología , Antituberculosos/síntesis química , Antituberculosos/farmacología , Humanos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Estructura Molecular , Pirazinas/química , Relación Estructura-ActividadRESUMEN
Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) has become a frequently deadly infection due to increasing antimicrobial resistance. This serious issue has driven efforts worldwide to discover new drugs effective against Mtb. One research area is the synthesis and evaluation of pyrazinamide derivatives as potential anti-TB drugs. In this paper we report the synthesis and biological evaluations of a series of ureidopyrazines. Compounds were synthesized by reacting alkyl/aryl isocyanates with aminopyrazine or with propyl 5-aminopyrazine-2-carboxylate. Reactions were performed in pressurized vials using a CEM Discover microwave reactor with a focused field. Purity and chemical structures of products were assessed, and the final compounds were tested in vitro for their antimycobacterial, antibacterial, and antifungal activities. Propyl 5-(3-phenylureido)pyrazine-2-carboxylate (compound 4, MICMtb = 1.56 µg/mL, 5.19 µM) and propyl 5-(3-(4-methoxyphenyl)ureido)pyrazine-2-carboxylate (compound 6, MICMtb = 6.25 µg/mL, 18.91 µM) had high antimycobacterial activity against Mtb H37Rv with no in vitro cytotoxicity on HepG2 cell line. Therefore 4 and 6 are suitable for further structural modifications that might improve their biological activity and physicochemical properties. Based on the structural similarity to 1-(2-chloropyridin-4-yl)-3-phenylurea, a known plant growth regulator, two selected compounds were evaluated for similar activity as abiotic elicitors.
Asunto(s)
Antituberculosos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Pirazinas/farmacología , Antituberculosos/síntesis química , Antituberculosos/química , Proliferación Celular/efectos de los fármacos , Fagopyrum/química , Células Hep G2 , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Reguladores del Crecimiento de las Plantas/síntesis química , Reguladores del Crecimiento de las Plantas/química , Reguladores del Crecimiento de las Plantas/farmacología , Pirazinamida/química , Pirazinamida/farmacología , Pirazinas/síntesis química , Pirazinas/química , Estrés Fisiológico/efectos de los fármacosRESUMEN
A series of substituted N-benzyl-3-chloropyrazine-2-carboxamides were prepared as positional isomers of 5-chloro and 6-chloro derivatives, prepared previously. During the aminolysis of the acyl chloride, the simultaneous substitution of chlorine with benzylamino moiety gave rise to N-benzyl-3-(benzylamino)pyrazine-2-carboxamides as side products, in some cases. Although not initially planned, the reaction conditions were modified to populate this double substituted series. The final compounds were tested against four mycobacterial strains. N-(2-methylbenzyl)-3-((2-methylbenzyl)amino)pyrazine-2-carboxamide (1a) and N-(3,4-dichlorobenzyl)-3-((3,4-dichlorobenzyl)amino)pyrazine-2-carboxamide (9a) proved to be the most effective against Mycobacterium tuberculosis H37Rv, with MIC = 12.5 µg·mL-1. Compounds were screened for antibacterial activity. The most active compound was 3-chloro-N-(2-chlorobenzyl)pyrazine-2-carboxamide (5) against Staphylococcus aureus with MIC = 7.81 µM, and Staphylococcus epidermidis with MIC = 15.62 µM. HepG2 in vitro cytotoxicity was evaluated for the most active compounds; however, no significant toxicity was detected. Compound 9a was docked to several conformations of the enoyl-ACP-reductase of Mycobacterium tuberculosis. In some cases, it was capable of H-bond interactions, typical for most of the known inhibitors.
Asunto(s)
Antibacterianos/síntesis química , Antibacterianos/farmacología , Pirazinas/síntesis química , Pirazinas/farmacología , Antibacterianos/química , Células Hep G2 , Humanos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Estructura Molecular , Mycobacterium tuberculosis/efectos de los fármacos , Pirazinas/química , Staphylococcus aureus/efectos de los fármacos , Staphylococcus epidermidis/efectos de los fármacos , Relación Estructura-ActividadRESUMEN
Pyrazinamide, the first-line antitubercular drug, has been regarded the basic component of tuberculosis treatment for over sixty years. Researchers have investigated its effect on Mycobacterium tuberculosis for this long time, and as a result, new potential targets of pyrazinamide or its active form, pyrazinoic acid, have been found. We have designed and prepared 3-(phenyl-carbamoyl)pyrazine-2-carboxylic acids as more lipophilic derivatives of pyrazinoic acid. We also prepared methyl and propyl derivatives as prodrugs with further increased lipophilicity. Antimycobacterial, antibacterial and antifungal growth inhibiting activity was investigated in all prepared compounds. 3-[(4-Nitrophenyl)carbamoyl]pyrazine-2-carboxylic acid (16) exerted high antimycobacterial activity against Mycobacterium tuberculosis H37Rv with MIC = 1.56 µg·mL-1 (5 µM). Propyl 3-{[4-(trifluoromethyl)phenyl]carbamoyl}pyrazine-2-carboxylate (18a) showed also high antimycobacterial activity against Mycobacterium tuberculosis H37Rv with MIC = 3.13 µg·mL-1. In vitro cytotoxicity of the active compounds was investigated and no significant cytotoxic effect was observed. Based to structural similarity to known inhibitors of decaprenylphosphoryl-ß-d-ribose oxidase, DprE1, we performed molecular docking of the prepared acids to DprE1. These in silico experiments indicate that modification of the linker connecting aromatic parts of molecule does not have any negative influence on the binding.
Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Pirazinas/química , Pirazinas/farmacología , Oxidorreductasas de Alcohol/antagonistas & inhibidores , Oxidorreductasas de Alcohol/química , Antifúngicos/química , Antifúngicos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Simulación por Computador , Diseño de Fármacos , Humanos , Pruebas de Sensibilidad Microbiana/métodos , Simulación del Acoplamiento Molecular/métodos , Estructura Molecular , Relación Estructura-ActividadRESUMEN
Chalcones, i.e., compounds with the chemical pattern of 1,3-diphenylprop-2-en-1-ones, exert a wide range of bio-activities, e.g., antioxidant, anti-inflammatory, anticancer, anti-infective etc. Our research group has been focused on pyrazine analogues of chalcones; several series have been synthesized and tested in vitro on antifungal and antimycobacterial activity. The highest potency was exhibited by derivatives with electron withdrawing groups (EWG) in positions 2 and 4 of the ring B. As halogens also have electron withdrawing properties, novel halogenated derivatives were prepared by Claisen-Schmidt condensation. All compounds were submitted for evaluation of their antifungal and antibacterial activity, including their antimycobacterial effect. In the antifungal assay against eight strains of selected fungi, growth inhibition of Candida glabrata and Trichophyton interdigitale (formerly T. mentagrophytes) was shown by non-alkylated derivatives with 2-bromo or 2-chloro substitution. In the panel of selected bacteria, 2-chloro derivatives showed the highest inhibitory effect on Staphylococcus sp. In addition, all products were also screened for their antimycobacterial activity against Mycobacterium tuberculosis H37RV My 331/88, M. kansasii My 235/80, M. avium 152/80 and M. smegmatis CCM 4622. Some of the examined compounds, inhibited growth of M. kansasii and M. smegmatis with minimum inhibitory concentrations (MICs) comparable with those of isoniazid.
Asunto(s)
Antiinfecciosos , Candida glabrata/crecimiento & desarrollo , Chalcona , Hidrocarburos Halogenados , Mycobacterium/crecimiento & desarrollo , Pirazinas , Trichophyton/crecimiento & desarrollo , Antiinfecciosos/síntesis química , Antiinfecciosos/química , Antiinfecciosos/farmacología , Chalcona/síntesis química , Chalcona/química , Chalcona/farmacología , Hidrocarburos Halogenados/síntesis química , Hidrocarburos Halogenados/química , Hidrocarburos Halogenados/farmacología , Pirazinas/síntesis química , Pirazinas/química , Pirazinas/farmacologíaRESUMEN
In this work a series of 15 N-benzylamine substituted 5-amino-6-methyl-pyrazine-2,3-dicarbonitriles was prepared by the aminodehalogenation reactions using microwave assisted synthesis with experimentally set and proven conditions. This approach for the aminodehalogenation reaction was chosen due to its higher yields and shorter reaction times. The products of this reaction were characterized by IR, NMR and other analytical data. The compounds were evaluated for their antibacterial, antifungal and herbicidal activity. Compounds 3 (R=3,4-Cl), 9 (R=2-Cl) and 11 (R=4-CF3) showed good antimycobacterial activity against Mycobacterium tuberculosis (MIC=6.25 µg/mL). It was found that the lipophilicity is important for antimycobacterial activity and the best substitution on the benzyl moiety of the compounds is a halogen or trifluoromethyl group according to Craig's plot. The activities against bacteria or fungi were insignificant. The presented compounds also inhibited photosynthetic electron transport in spinach chloroplasts and the IC50 values of the active compounds varied in the range from 16.4 to 487.0 µmol/L. The most active substances were 2 (R=3-CF3), 3 (R=3,4-Cl) and 11 (R=4-CF3). A linear dependence between lipophilicity and herbicidal activity was observed.
Asunto(s)
Antituberculosos/farmacología , Nitrilos/farmacología , Pirazinas/farmacología , Antituberculosos/síntesis química , Cloroplastos/efectos de los fármacos , Cloroplastos/metabolismo , Transporte de Electrón/efectos de los fármacos , Halogenación , Herbicidas/síntesis química , Herbicidas/farmacología , Concentración 50 Inhibidora , Pruebas de Sensibilidad Microbiana , Microondas , Mycobacterium smegmatis/efectos de los fármacos , Mycobacterium tuberculosis/efectos de los fármacos , Nitrilos/síntesis química , Fotosíntesis/efectos de los fármacos , Pirazinas/síntesis química , Spinacia oleracea/efectos de los fármacos , Spinacia oleracea/metabolismoRESUMEN
A series of 18 N-alkyl substituted 3-aminopyrazine-2-carboxamides was prepared in this work according to previously experimentally set and proven conditions using microwave assisted synthesis methodology. This approach for the aminodehalogenation reaction was chosen due to higher yields and shorter reaction times compared to organic reactions with conventional heating. Antimycobacterial, antibacterial, antifungal and photosynthetic electron transport (PET) inhibiting in vitro activities of these compounds were investigated. Experiments for the determination of lipophilicity were also performed. Only a small number of substances with alicyclic side chain showed activity against fungi which was the same or higher than standards and the biological efficacy of the compounds increased with rising lipophilicity. Nine pyrazinamide derivatives also inhibited PET in spinach chloroplasts and the IC50 values of these compounds varied in the range from 14.3 to 1590.0 µmol/L. The inhibitory activity was connected not only with the lipophilicity, but also with the presence of secondary amine fragment bounded to the pyrazine ring. Structure-activity relationships are discussed as well.
Asunto(s)
Antifúngicos/síntesis química , Herbicidas/síntesis química , Pirazinamida/análogos & derivados , Pirazinamida/síntesis química , Antifúngicos/farmacología , Antituberculosos/síntesis química , Antituberculosos/farmacología , Candida albicans/efectos de los fármacos , Cloroplastos/efectos de los fármacos , Cloroplastos/metabolismo , Transporte de Electrón/efectos de los fármacos , Herbicidas/farmacología , Interacciones Hidrofóbicas e Hidrofílicas , Concentración 50 Inhibidora , Pruebas de Sensibilidad Microbiana , Microondas , Mycobacterium tuberculosis/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Pirazinamida/farmacología , Spinacia oleracea/efectos de los fármacos , Spinacia oleracea/metabolismo , Staphylococcus epidermidis/efectos de los fármacos , Relación Estructura-ActividadRESUMEN
Background: Increasing rates of acquired resistance have justified the critical need for novel antimicrobial drugs. One viable concept is the modification of known drugs. Methods & results: 21 mafenide-based compounds were prepared via condensation reactions and screened for antimicrobial efficacy, which demonstrated promising activity against both Gram-positive and Gram-negative pathogens, pathogenic fungi and mycobacterial strains (minimum inhibitory concentrations from 3.91 µM). Importantly, they retained activity against a panel of superbugs (methicillin- and vancomycin-resistant staphylococci, enterococci, multidrug-resistant Mycobacterium tuberculosis) without any cross-resistance. Unlike mafenide, most of its imines were bactericidal. Toxicity to HepG2 cells was also investigated. Conclusion: Schiff bases were significantly more active than the parent drug, with iodinated salicylidene and 5-nitrofuran/thiophene-methylidene scaffolds being preferred in identifying the most promising drug candidates.
Asunto(s)
Antiinfecciosos , Mycobacterium tuberculosis , Mafenida , Bases de Schiff/farmacología , Antibacterianos/farmacología , Pruebas de Sensibilidad MicrobianaRESUMEN
In this study, we have focused on a multiparametric microbiological analysis of the antistaphylococcal action of the iodinated imine BH77, designed as an analogue of rafoxanide. Its antibacterial activity against five reference strains and eight clinical isolates of Gram-positive cocci of the genera Staphylococcus and Enterococcus was evaluated. The most clinically significant multidrug-resistant strains, such as methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant S. aureus (VRSA), and vancomycin-resistant Enterococcus faecium, were also included. The bactericidal and bacteriostatic actions, the dynamics leading to a loss of bacterial viability, antibiofilm activity, BH77 activity in combination with selected conventional antibiotics, the mechanism of action, in vitro cytotoxicity, and in vivo toxicity in an alternative animal model, Galleria mellonella, were analyzed. The antistaphylococcal activity (MIC) ranged from 15.625 to 62.5 µM, and the antienterococcal activity ranged from 62.5 to 125 µM. Its bactericidal action; promising antibiofilm activity; interference with nucleic acid, protein, and peptidoglycan synthesis pathways; and nontoxicity/low toxicity in vitro and in vivo in the Galleria mellonella model were found to be activity attributes of this newly synthesized compound. In conclusion, BH77 could be rightfully minimally considered at least as the structural pattern for future adjuvants for selected antibiotic drugs. IMPORTANCE Antibiotic resistance is among the largest threats to global health, with a potentially serious socioeconomic impact. One of the strategies to deal with the predicted catastrophic future scenarios associated with the rapid emergence of resistant infectious agents lies in the discovery and research of new anti-infectives. In our study, we have introduced a rafoxanide analogue, a newly synthesized and described polyhalogenated 3,5-diiodosalicylaldehyde-based imine, that effectively acts against Gram-positive cocci of the genera Staphylococcus and Enterococcus. The inclusion of an extensive and comprehensive analysis for providing a detailed description of candidate compound-microbe interactions allows the valorization of the beneficial attributes linked to anti-infective action conclusively. In addition, this study can help with making rational decisions about the possible involvement of this molecule in advanced studies or may merit the support of studies focused on related or derived chemical structures to discover more effective new anti-infective drug candidates.
Asunto(s)
Antiinfecciosos , Staphylococcus aureus Resistente a Meticilina , Animales , Rafoxanida/farmacología , Staphylococcus aureus , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/química , Antiinfecciosos/farmacología , Staphylococcus , EnterococcusRESUMEN
Tuberculosis is the number one killer of infectious diseases caused by a single microbe, namely Mycobacterium tuberculosis (Mtb). The success rate of curing this infection is decreasing due to emerging antimicrobial resistance. Therefore, novel treatments are urgently needed. As an attempt to develop new antituberculars effective against both drugs-sensitive and drug-resistant Mtb, we report the synthesis of a novel series inspired by combining fragments from the first-line agents isoniazid and pyrazinamide (series I) and isoniazid with the second-line agent 4-aminosalicylic acid (series II). We identified compound 10c from series II with selective, potent in vitro antimycobacterial activity against both drug-sensitive and drug-resistant Mtb H37Rv strains with no in vitro or in vivo cytotoxicity. In the murine model of tuberculosis, compound 10c caused a statistically significant decrease in colony-forming units (CFU) in spleen. Despite having a 4-aminosalicylic acid fragment in its structure, biochemical studies showed that compound 10c does not directly affect the folate pathway but rather methionine metabolism. In silico simulations indicated the possibility of binding to mycobacterial methionine-tRNA synthetase. Metabolic study in human liver microsomes revealed that compound 10c does not have any known toxic metabolites and has a half-life of 630 min, overcoming the main drawbacks of isoniazid (toxic metabolites) and 4-aminosalicylic acid (short half-life).
Asunto(s)
Ácido Aminosalicílico , Mycobacterium tuberculosis , Tuberculosis , Humanos , Animales , Ratones , Isoniazida/farmacología , Ácido Aminosalicílico/farmacología , Antituberculosos/química , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , Metionina , Pruebas de Sensibilidad MicrobianaRESUMEN
In the original publication [...].