Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Analyst ; 149(10): 3008-3016, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38606455

RESUMEN

Fast-scan cyclic voltammetry (FSCV) is a widely used technique for detecting neurotransmitters. However, electrode fouling can negatively impact its accuracy and sensitivity. Fouling refers to the accumulation of unwanted materials on the electrode surface, which can alter its electrochemical properties and reduce its sensitivity and selectivity. Fouling mechanisms can be broad and may include biofouling, the accumulation of biomolecules on the electrode surface, and chemical fouling, the deposition of unwanted chemical species. Despite individual studies discussing fouling effects on either the working electrode or the reference electrode, no comprehensive study has been conducted to compare the overall fouling effects on both electrodes in the context of FSCV. Here, we examined the effects of biofouling and chemical fouling on the carbon fiber micro-electrode (CFME) as the working electrode and the Ag/AgCl reference electrode with FSCV. Both fouling mechanisms significantly decreased the sensitivity and caused peak voltage shifts in the FSCV signal with the CFME, but not with the Ag/AgCl reference electrode. Interestingly, previous studies have reported peak voltage shifts in FSCV signals due to the fouling of Ag/AgCl electrodes after implantation in the brain. We noticed in a previous study that energy-dispersive spectroscopy (EDS) spectra showed increased sulfide ion concentration after implantation. We hypothesized that sulfide ions may be responsible for the peak voltage shift. To test this hypothesis, we added sulfide ions to the buffer solution, which decreased the open circuit potential of the Ag/AgCl electrode and caused a peak voltage shift in the FSCV voltammograms. Also, EDS analysis showed that sulfide ion concentration increased on the surface of the Ag/AgCl electrodes after 3 weeks of chronic implantation, necessitating consideration of sulfide ions as the fouling agent for the reference electrodes. Overall, our study provides important insights into the mechanisms of electrode fouling and its impact on FSCV measurements. These findings could inform the design of FSCV experiments, with the development of new strategies for improving the accuracy and reliability of FSCV measurements in vivo.


Asunto(s)
Incrustaciones Biológicas , Técnicas Electroquímicas , Neurotransmisores , Neurotransmisores/análisis , Incrustaciones Biológicas/prevención & control , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Animales , Compuestos de Plata/química , Fibra de Carbono/química , Microelectrodos , Sulfuros/química , Electrodos
2.
Biochem Biophys Res Commun ; 483(1): 305-311, 2017 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-28027932

RESUMEN

RanBPM is a scaffolding protein that regulates several cellular processes by interacting with various proteins. Previously, we reported that RanBPM acts as a negative regulator of BLT2, a low-affinity leukotriene B4 receptor; thus, it interferes with BLT2-mediated cell motility. In the present study, we observed that the expression levels of RanBPM were markedly reduced in the highly aggressive MDA-MB-435 and MDA-MB-231 human breast cancer cell lines compared with those in non-invasive MCF-7 cells. Additionally, we found that the restoration of RanBPM levels suppressed the invasiveness of these aggressive breast cancer cells in a manner dependent on BLT2 activation. In contrast, the knockdown of endogenous RanBPM by shRNA strongly promoted invasiveness in non-invasive MCF-7 cells. We also observed that RanBPM suppressed the invasiveness of aggressive breast cancer cells by inhibiting BLT2-mediated reactive oxygen species (ROS) generation and IL-8 production. Taken together, our results suggest that RanBPM acts as a negative regulator of BLT2, thus attenuating the invasiveness of aggressive breast cancer cells.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neoplasias de la Mama/metabolismo , Proteínas del Citoesqueleto/metabolismo , Regulación Neoplásica de la Expresión Génica , Interleucina-8/metabolismo , Proteínas Nucleares/metabolismo , Receptores de Leucotrieno B4/metabolismo , Línea Celular Tumoral , Proliferación Celular , Ensayo de Inmunoadsorción Enzimática , Femenino , Perfilación de la Expresión Génica , Humanos , Leucotrieno B4/metabolismo , Células MCF-7 , Invasividad Neoplásica , Especies Reactivas de Oxígeno/metabolismo
3.
Elife ; 122024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38869243

RESUMEN

An expanded CAG repeat in the huntingtin gene (HTT) causes Huntington's disease (HD). Since the length of uninterrupted CAG repeat, not polyglutamine, determines the age-at-onset in HD, base editing strategies to convert CAG to CAA are anticipated to delay onset by shortening the uninterrupted CAG repeat. Here, we developed base editing strategies to convert CAG in the repeat to CAA and determined their molecular outcomes and effects on relevant disease phenotypes. Base editing strategies employing combinations of cytosine base editors and guide RNAs (gRNAs) efficiently converted CAG to CAA at various sites in the CAG repeat without generating significant indels, off-target edits, or transcriptome alterations, demonstrating their feasibility and specificity. Candidate BE strategies converted CAG to CAA on both expanded and non-expanded CAG repeats without altering HTT mRNA and protein levels. In addition, somatic CAG repeat expansion, which is the major disease driver in HD, was significantly decreased in the liver by a candidate BE strategy treatment in HD knock-in mice carrying canonical CAG repeats. Notably, CAG repeat expansion was abolished entirely in HD knock-in mice carrying CAA-interrupted repeats, supporting the therapeutic potential of CAG-to-CAA conversion strategies in HD and potentially other repeat expansion disorders.


Asunto(s)
Edición Génica , Proteína Huntingtina , Enfermedad de Huntington , Expansión de Repetición de Trinucleótido , Enfermedad de Huntington/genética , Enfermedad de Huntington/terapia , Animales , Edición Génica/métodos , Ratones , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Expansión de Repetición de Trinucleótido/genética , Modelos Animales de Enfermedad , Humanos , Mutación , Técnicas de Sustitución del Gen
4.
bioRxiv ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38948755

RESUMEN

Huntington's disease (HD), due to expansion of a CAG repeat in HTT , is representative of a growing number of disorders involving somatically unstable short tandem repeats. We find that overlapping and distinct genetic modifiers of clinical landmarks and somatic expansion in blood DNA reveal an underlying complexity and cell-type specificity to the mismatch repair-related processes that influence disease timing. Differential capture of non-DNA-repair gene modifiers by multiple measures of cognitive and motor dysfunction argues additionally for cell-type specificity of pathogenic processes. Beyond trans modifiers, differential effects are also illustrated at HTT by a 5'-UTR variant that promotes somatic expansion in blood without influencing clinical HD, while, even after correcting for uninterrupted CAG length, a synonymous sequence change at the end of the CAG repeat dramatically hastens onset of motor signs without increasing somatic expansion. Our findings are directly relevant to therapeutic suppression of somatic expansion in HD and related disorders and provide a route to define the individual neuronal cell types that contribute to different HD clinical phenotypes.

5.
bioRxiv ; 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37162872

RESUMEN

An expanded CAG repeat in the huntingtin gene ( HTT ) causes Huntington's disease (HD). Since the length of uninterrupted CAG repeat, not polyglutamine, determines the age-at-onset in HD, base editing strategies to convert CAG to CAA are anticipated to delay onset by shortening the uninterrupted CAG repeat. Here, we developed base editing strategies to convert CAG in the repeat to CAA and determined their molecular outcomes and effects on relevant disease phenotypes. Base editing strategies employing combinations of cytosine base editors and gRNAs efficiently converted CAG to CAA at various sites in the CAG repeat without generating significant indels, off-target edits, or transcriptome alterations, demonstrating their feasibility and specificity. Candidate BE strategies converted CAG to CAA on both expanded and non-expanded CAG repeats without altering HTT mRNA and protein levels. In addition, somatic CAG repeat expansion, which is the major disease driver in HD, was significantly decreased by a candidate BE strategy treatment in HD knock-in mice carrying canonical CAG repeats. Notably, CAG repeat expansion was abolished entirely in HD knock-in mice carrying CAA-interrupted repeats, supporting the therapeutic potential of CAG-to-CAA conversion base editing strategies in HD and potentially other repeat expansion disorders.

6.
Exp Mol Med ; 53(10): 1559-1568, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34635780

RESUMEN

Although lung cancer is the leading cause of cancer-related deaths worldwide and KRAS is the most frequently mutated oncogene in lung cancer cases, the mechanism by which KRAS mutation drives lung cancer has not been fully elucidated. Here, we report that the expression levels of leukotriene B4 receptor-2 (BLT2) and its ligand-producing enzymes (5-LOX, 12-LOX) were highly increased by mutant KRAS and that BLT2 or 5-/12-LOX blockade attenuated KRAS-driven lung cell proliferation and production of interleukin-6 (IL-6), a principal proinflammatory mediator of lung cancer development. Next, we explored the roles of BLT2 and 5-/12-LOX in transgenic mice with lung-specific expression of mutant KRAS (KrasG12D) and observed that BLT2 or 5-/12-LOX inhibition decreased IL-6 production and tumor formation. To further determine whether BLT2 is involved in KRAS-driven lung tumor formation, we established a KrasG12D/BLT2-KO double-mutant mouse model. In the double-mutant mice, we observed significantly suppressed IL-6 production and lung tumor formation. Additionally, we observed high BLT2 expression in tissue samples from patients with KrasG12D-expressing lung adenocarcinoma, supporting the contributory role of BLT2 in KRAS-driven human lung cancer. Collectively, our results suggest that BLT2 is a potential contributor to KRAS-driven lung cancer and identify an attractive therapeutic target for KRAS-driven lung cancer.


Asunto(s)
Interleucina-6 , Neoplasias Pulmonares , Animales , Humanos , Inflamación , Interleucina-6/genética , Interleucina-6/metabolismo , Leucotrieno B4/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Receptores de Leucotrieno B4/genética , Receptores de Leucotrieno B4/metabolismo
7.
IEEE Trans Haptics ; 13(1): 116-122, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31944991

RESUMEN

In our daily lives, we interact with fluids by touching them directly with our hands. Fluids produce a pressure field against the surface of our hands, and we experience fluid dynamics over our skin temporally and spatially at varying pressure distributions depending on fluid properties as well as on the interacting hand's poses and motions. To improve the realism of fluid simulation together with user interaction, we propose a real-time fluid tactile rendering technique that computes the pressure field on a virtual hand surface to be delivered to the user's actual hand via ultrasound-based mid-air haptic display. Our haptic rendering algorithm computes the feedback force in two stages: First, the pressure distribution of the rigid-fluid interaction is computed from a real-time Lagrangian fluid simulation, and then a set of focal points that reflects the generated pressure field is extracted by using a hill-climbing method which gives the local extrema of the pressure field of simulation. We implement a real-time smoothed-particle hydrodynamics fluid simulator and the proposed haptic rendering algorithm using adaptive amplitude modulation approach to demonstrate the effectiveness of our method in fluid tactile rendering in various scenarios.


Asunto(s)
Retroalimentación Sensorial , Hidrodinámica , Percepción del Tacto , Adulto , Algoritmos , Femenino , Humanos , Masculino , Estimulación Física , Transductores , Ondas Ultrasónicas , Ultrasonografía/métodos , Adulto Joven
8.
Biochim Biophys Acta Mol Cell Res ; 1866(3): 329-336, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30553812

RESUMEN

Inflammatory lipid mediators play various roles in colorectal cancer progression through complex pathways. However, the mechanism by which lipoxygenase-derived inflammatory lipid mediators contribute to colorectal cancer progression remains elusive. In this study, we found that BLT2, a cell surface GPCR for leukotriene B4 and 12­hydroxyeicosatetraenoic acid, is highly upregulated in KRAS mutant LOVO and SW480 colorectal cancer cells and plays critical roles in mediating proliferation through activation of phosphatidylinositol 3­kinase (PI3K)/protein kinase B (Akt) and subsequent upregulation of cyclin D1. Exposure to BLT2 siRNA or LY255283, a specific BLT2 inhibitor, clearly suppressed the proliferation of KRAS mutant colorectal cancer cells and markedly increased cell cycle arrest by downregulating the PI3K/Akt-cyclin D1 cascade. Xenograft tumor formation by LOVO and SW480 cells in athymic mice was also substantially reduced by treatment with the BLT2 inhibitor in vivo. Together, our study demonstrates that BLT2 is necessary for the proliferation of LOVO and SW480 cells and thus may be a potential therapeutic target for the treatment of KRAS mutant colorectal cancer.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Receptores de Leucotrieno B4/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Femenino , Humanos , Ácidos Hidroxieicosatetraenoicos/farmacología , Leucotrieno B4/farmacología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Receptores de Leucotrieno B4/antagonistas & inhibidores , Receptores de Leucotrieno B4/genética , Transducción de Señal , Tetrazoles/farmacología , Regulación hacia Arriba , Ensayos Antitumor por Modelo de Xenoinjerto
9.
BMB Rep ; 51(8): 373-377, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29898809

RESUMEN

Triple-negative breast cancer (TNBC) is considered to be a notorious type of cancer due to its aggressive metastatic potential and poor prognosis. Recent evidence suggests that BLT2, a low-affinity LTB4 receptor is critically associated with the phenotypes of TNBC cells, including invasion, metastasis, and survival. Furthermore, in a group of 545 breast cancer patients with metastasis, we observed that the high-BLT2 subgroup had a lower disease-free-survival rate than the low-BLT2 subgroup. Thus, we theorized that anti-BLT2 strategies could facilitate the development of new therapies used for TNBC. This review focuses on recent discoveries regarding BLT2 and its roles in as a novel prognostic biomarker in TNBC. [BMB Reports 2018; 51(8): 373-377].


Asunto(s)
Receptores de Leucotrieno B4/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Femenino , Humanos , Metástasis de la Neoplasia , Pronóstico , Receptores de Leucotrieno B4/genética , Neoplasias de la Mama Triple Negativas/genética
10.
Exp Mol Med ; 49(11): e402, 2017 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-29170475

RESUMEN

Recently, single-nucleotide polymorphisms (SNPs) in G-protein-coupled receptors (GPCRs) have been suggested to contribute to physiopathology and therapeutic effects. Leukotriene B4 receptor 2 (BLT2), a member of the GPCR family, plays a critical role in the pathogenesis of several inflammatory diseases, including cancer and asthma. However, no studies on BLT2 SNP effects have been reported to date. In this study, we demonstrate that the BLT2 SNP (rs1950504, Asp196Gly), a Gly-196 variant of BLT2 (BLT2 D196G), causes enhanced cell motility under low-dose stimulation of its ligands. In addition, we demonstrated that Akt activation and subsequent production of reactive oxygen species (ROS), both of which act downstream of BLT2, are also increased by BLT2 D196G in response to low-dose ligand stimulation. Furthermore, we observed that the ligand binding affinity of BLT2 D196G was enhanced compared with that of BLT2. Through homology modeling analysis, it was predicted that BLT2 D196G loses ionic interaction with R197, potentially resulting in increased agonist-receptor interaction. To the best of our knowledge, this report is the first to describe a SNP study on BLT2 and shows that BLT2 D196G enhances ligand sensitivity, thereby increasing cell motility in response to low-dose ligand stimulation.


Asunto(s)
Movimiento Celular/genética , Polimorfismo de Nucleótido Simple , Receptores de Leucotrieno B4/genética , Alelos , Animales , Células CHO , Quimiotaxis/genética , Cricetulus , Genotipo , Humanos , Leucotrieno B4/química , Leucotrieno B4/metabolismo , Ligandos , Modelos Moleculares , Conformación Molecular , Sistemas de Lectura Abierta , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores de Leucotrieno B4/química , Receptores de Leucotrieno B4/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA