Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Korean Assoc Oral Maxillofac Surg ; 44(2): 79-85, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29732313

RESUMEN

OBJECTIVES: The aim of this study was to evaluate the effects of herbal extracts on bone regeneration. Two known samples were screened. MATERIALS AND METHODS: We previously established a rat calvaria defect model using a combination of collagen scaffold and herbal extracts. An 8 mm diameter trephine bur with a low-speed dental hand piece was used to create a circular calvaria defect. The experimental group was divided into 4 classifications: control, collagen matrix, Danshen with collagen, and Ge Gan with collagen. Animals in each group were sacrificed at 4, 6, 8, and 10 weeks after surgery, and bone regeneration ability was evaluated by histological examination. RESULTS: Results revealed that both Danshen and Ge Gan extracts increased bone formation activity when used with collagen matrix. All groups showed almost the same histological findings until 6 weeks. However, after 6 weeks, bone formation activity proceeded differently in each group. In the experimental groups, new bone formation activity was found continuously up to 10 weeks. In the Danshen and Ge Gan groups, grafted materials were still present until 10 weeks after treatment, as evidenced by foreign body reactions showing multinucleated giant cells in chronic inflammatory vascular connective tissue. CONCLUSION: Histological analyses showed that Danshen and Ge Gan extractions increased bone formation activity when used in conjunction with collagen matrix.

2.
J Korean Assoc Oral Maxillofac Surg ; 43(5): 343-350, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29142870

RESUMEN

The aim of this study is to introduce a surgical technique that can maintain blood supply to prevent condylar resorption in the extracorporeal reduction of condylar fracture. Neither the medial pterygoid muscle on the ramal bone nor the lateral pterygoid muscle on the condylar fragment was detached after vertical ramal osteotomy. Thus, reduction was performed in the intracorporeal state. Therefore, blood supply was expected to be maintained to the fragments of both the condylar and ramal bones. On postoperative radiographs, the anatomical outline of the fractured condyle was well restored, and the occlusion was stable. In the unilateral case, there were no signs of mandibular condylar resorption until postoperative 3 weeks. In the 2 bilateral cases, condylar displacements with plate fractures and screw loosening were observed at postoperative 1 month or 5 months, but radiodensity at the displaced fracture site increased during the follow-up period. Finally, complete remodeling of the condylar fragments with restored anatomic appearance was observed on 8-month or 2-year follow-up radiographs. All cases exhibited good healing aspects with no signs or symptoms of mandibular condylar dysfunction during the postoperative remodeling period after intracorporeal reduction of condylar fracture.

3.
J Korean Assoc Oral Maxillofac Surg ; 43(2): 125-133, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28462198

RESUMEN

Intramuscular hemangioma (IMH) is a rare vascular disease involving skeletal muscle, comprising only 0.8% of hemangiomas. About 10% to 15% of IMHs occur in the head and neck region, mostly involving the masseter muscle. IMH occurs mostly in childhood, but is often not found until unexpected enlargement, pain, or cosmetic asymmetry occurs in adulthood. Several non-surgical treatments including cryotherapy, sclerosant injection, and arterial ligature have been described, but complete surgical resection is the curative intervention. In this report, we present two rare cases of IMH. One IMH case in a 48-year-old male occurred in the masseter muscle feeding from the transverse facial artery. Embolization of the distal branch of the facial artery was first conducted, and then the buccal mass was removed surgically via the intraoral approach. A second IMH case in a 58-year-old female occurred in the orbicularis oris muscle feeding from the superior labial artery, and the mass was excised surgically without embolization.

4.
Nat Commun ; 8(1): 102, 2017 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-28740232

RESUMEN

Macroautophagy mediates the selective degradation of proteins and non-proteinaceous cellular constituents. Here, we show that the N-end rule pathway modulates macroautophagy. In this mechanism, the autophagic adapter p62/SQSTM1/Sequestosome-1 is an N-recognin that binds type-1 and type-2 N-terminal degrons (N-degrons), including arginine (Nt-Arg). Both types of N-degrons bind its ZZ domain. By employing three-dimensional modeling, we developed synthetic ligands to p62 ZZ domain. The binding of Nt-Arg and synthetic ligands to ZZ domain facilitates disulfide bond-linked aggregation of p62 and p62 interaction with LC3, leading to the delivery of p62 and its cargoes to the autophagosome. Upon binding to its ligand, p62 acts as a modulator of macroautophagy, inducing autophagosome biogenesis. Through these dual functions, cells can activate p62 and induce selective autophagy upon the accumulation of autophagic cargoes. We also propose that p62 mediates the crosstalk between the ubiquitin-proteasome system and autophagy through its binding Nt-Arg and other N-degrons.Soluble misfolded proteins that fail to be degraded by the ubiquitin proteasome system (UPS) are redirected to autophagy via specific adaptors, such as p62. Here the authors show that p62 recognises N-degrons in these proteins, acting as a N-recognin from the proteolytic N-end rule pathway, and targets these cargos to autophagosomal degradation.


Asunto(s)
Autofagosomas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteína Sequestosoma-1/metabolismo , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales , Animales , Arginina/metabolismo , Autofagia , Sitios de Unión , Western Blotting , Células Cultivadas , Células HEK293 , Células HeLa , Humanos , Ratones Noqueados , Microscopía Confocal , Modelos Moleculares , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Dominios Proteicos , Proteolisis , Proteína Sequestosoma-1/química , Proteína Sequestosoma-1/genética , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
5.
Maxillofac Plast Reconstr Surg ; 38(1): 16, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27073798

RESUMEN

BACKGROUND: The association of biomaterial combined with repair factor-like platelet-rich plasma (PRP) has prospective values. Bovine-derived xenograft has been identified as an osteoconductive and biocompatible grafting material that provides osseointegration ability. PRP has become a valuable adjunctive agent to promote healing in a lot of dental and oral surgery procedures. However, there are controversies with respect to the regenerative capacity of PRP and the real benefits of its use in bone grafts. The purpose of this study was to assess the influence of PRP combined with xenograft for the repair of peri-implant bone defects. METHODS: Twelve rabbits were used in this study, and the experimental surgery with implant installation was performed simultaneously. Autologous PRP was prepared before the surgical procedure. An intrabony defect (7.0 mm in diameter and 3.0 mm deep) was created in the tibia of each rabbit; then, 24 titanium dental implants (3.0 mm in diameter and 8.5 mm long) were inserted into these osteotomy sites. Thus, a standardized gap (4.0 mm) was established between the surrounding bony walls and the implant surface. The gaps were treated with either xenograft alone (control group) or xenograft combined with PRP (experimental group). After healing for 1, 2, 3, 4, 5, and 6 weeks, the rabbits were sacrificed with an overdose of KCl solution. Two rabbits were killed at each time, and the samples including dental implants and surrounding bone were collected and processed for histological analysis. RESULTS: More newly formed bone and a better bone healing process were observed in control group. The histomorphometric analysis revealed that the mean percentage of bone-to-implant contact in the control group was significantly higher than that of the experimental group (25.23 vs. 8.16 %; P < 0.05, independent-simple t test, analysis of variance [ANOVA]). CONCLUSIONS: The results indicate that in the addition of PRP to bovine-derived xenograft in the repair of bone defects around the implant, PRP may delay peri-implant bone healing.

6.
Nat Cell Biol ; 17(7): 917-29, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26075355

RESUMEN

We show that ATE1-encoded Arg-transfer RNA transferase (R-transferase) of the N-end rule pathway mediates N-terminal arginylation of multiple endoplasmic reticulum (ER)-residing chaperones, leading to their cytosolic relocalization and turnover. N-terminal arginylation of BiP (also known as GRP78), protein disulphide isomerase and calreticulin is co-induced with autophagy during innate immune responses to cytosolic foreign DNA or proteasomal inhibition, associated with increased ubiquitylation. Arginylated BiP (R-BiP) is induced by and associated with cytosolic misfolded proteins destined for p62 (also known as sequestosome 1, SQSTM1) bodies. R-BiP binds the autophagic adaptor p62 through the interaction of its N-terminal arginine with the p62 ZZ domain. This allosterically induces self-oligomerization and aggregation of p62 and increases p62 interaction with LC3, leading to p62 targeting to autophagosomes and selective lysosomal co-degradation of R-BiP and p62 together with associated cargoes. In this autophagic mechanism, Nt-arginine functions as a delivery determinant, a degron and an activating ligand. Bioinformatics analysis predicts that many ER residents use arginylation to regulate non-ER processes.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Arginina/metabolismo , Autofagia , Retículo Endoplásmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Secuencia de Aminoácidos , Aminoaciltransferasas/genética , Aminoaciltransferasas/metabolismo , Animales , Línea Celular Tumoral , Células Cultivadas , Embrión de Mamíferos/citología , Chaperón BiP del Retículo Endoplásmico , Fibroblastos/metabolismo , Células HEK293 , Células HeLa , Proteínas de Choque Térmico/genética , Humanos , Immunoblotting , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones Noqueados , Microscopía Confocal , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Datos de Secuencia Molecular , Unión Proteica , Interferencia de ARN , Homología de Secuencia de Aminoácido , Proteína Sequestosoma-1
7.
Anticancer Res ; 33(3): 763-77, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23482743

RESUMEN

We characterized the cellular properties of cancer stem-like cells (CSLCs) isolated from immortalized MDA-MB453 human breast cancer cells in culture. We showed that although the expression of Octamer-binding transcription factor-4 (OCT4) correlates to stemness in these CSLCs, OCT4 knockdown does not induce their differentiation. Our results suggest that the differentiation program in MDA-MB453 CSLCs is blocked at a step upstream of the transcription of the OCT4 promoter, allowing CSLCs to maintain their population through asymmetric cell division during many repeated passages. Comparative expression analysis indicates that only a subset of genes and signaling pathways known to be associated with survival and maintenance of CSCs are selectively expressed in CSLCs, as compared with non-CSLCs fractionated from the same parental MDA-MB453 cells. These results suggest that selective expression of a limited number of genes may be sufficient for establishment and maintenance of CSLCs with high tumorigenicity.


Asunto(s)
Neoplasias de la Mama/patología , Células Madre Neoplásicas/metabolismo , Autofagia , Biomarcadores , Línea Celular Tumoral , Estrés del Retículo Endoplásmico , Femenino , Perfilación de la Expresión Génica , Histonas/metabolismo , Humanos , Factor 3 de Transcripción de Unión a Octámeros/análisis , Factor 3 de Transcripción de Unión a Octámeros/genética , Tretinoina/farmacología , Ubiquitinación
8.
Gene ; 513(1): 75-81, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23137637

RESUMEN

Centrosomal proteins play important roles in cell cycle. Among them, the centrosomal protein of 131kDa (CEP131) has been reported as a critical factor for cilia formation which is related with development, signaling, and various diseases, the malfunction of cilia leading to cancer. Specificity protein 1 (SP1), known as a centrosome regulator, is an essential transcription factor regulating the genes involved in multiple cellular processes such as cell cycle, apoptosis, and DNA damages. In this study, we explored the crucial role of SP1 in the regulation of CEP131 gene transcription. A deletion analysis of the CEP131 promoter region revealed dominant promoter elements within the sequence between -400bp and -200bp, which contained consensus binding sites for SP1. Electrophoretic mobility shift assay (EMSA) and chromatin immuno-precipitation (ChIP) assay further confirmed the direct binding of SP1 to the CEP131 promoter. On the other hand, CEP131 transcription could be inhibited by mithramycin (a GC-rich region inhibitor), but exogenous expression of SP1 could increase CEP131 expression as evidenced by a reporter gene assay. In addition, mutation of several SP1 binding sites revealed four SP1 binding sites at -244/-225, -258/-239, -304/-283 and -323/-304 that strongly affect CEP131 expression. Hence, it is suggested that SP1 is a pivotal transcription factor for the regulation of CEP131 expression, consequently leading the control of centrosome functions.


Asunto(s)
Proteínas de Ciclo Celular/genética , Regulación de la Expresión Génica , Proteínas de Microtúbulos/genética , Factor de Transcripción Sp1/metabolismo , Sitios de Unión/genética , Centrosoma/efectos de los fármacos , Centrosoma/metabolismo , Inmunoprecipitación de Cromatina , Proteínas del Citoesqueleto , Ensayo de Cambio de Movilidad Electroforética , Células HEK293 , Células HeLa , Humanos , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Plásmidos , Plicamicina/farmacología , Regiones Promotoras Genéticas , Unión Proteica , Eliminación de Secuencia
9.
PLoS One ; 7(5): e37414, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22616001

RESUMEN

The N-end rule pathway is a proteolytic system in which its recognition components (N-recognins) recognize destabilizing N-terminal residues of short-lived proteins as an essential element of specific degrons, called N-degrons. The RING E3 ligases UBR2 and UBR1 are major N-recognins that share size (200 kDa), conserved domains and substrate specificities to N-degrons. Despite the known function of the N-end rule pathway in degradation of cytosolic proteins, the major phenotype of UBR2-deficient male mice is infertility caused by arrest of spermatocytes at meiotic prophase I. UBR2-deficient spermatocytes are impaired in transcriptional silencing of sex chromosome-linked genes and ubiquitylation of histone H2A. In this study we show that the recruitment of UBR2 to meiotic chromosomes spatiotemporally correlates to the induction of chromatin-associated ubiquitylation, which is significantly impaired in UBR2-deficient spermatocytes. UBR2 functions as a scaffold E3 that promotes HR6B/UbcH2-dependent ubiquitylation of H2A and H2B but not H3 and H4, through a mechanism distinct from typical polyubiquitylation. The E3 activity of UBR2 in histone ubiquitylation is allosterically activated by dipeptides bearing destabilizing N-terminal residues. Insufficient monoubiquitylation and polyubiquitylation on UBR2-deficient meiotic chromosomes correlate to defects in double strand break (DSB) repair and other meiotic processes, resulting in pachytene arrest at stage IV and apoptosis. Some of these functions of UBR2 are observed in somatic cells, in which UBR2 is a chromatin-binding protein involved in chromatin-associated ubiquitylation upon DNA damage. UBR2-deficient somatic cells show an array of chromosomal abnormalities, including hyperproliferation, chromosome instability, and hypersensitivity to DNA damage-inducing reagents. UBR2-deficient mice enriched in C57 background die upon birth with defects in lung expansion and neural development. Thus, UBR2, known as the recognition component of a major cellular proteolytic system, is associated with chromatin and controls chromatin dynamics and gene expression in both germ cells and somatic cells.


Asunto(s)
Inestabilidad Cromosómica/fisiología , Fibroblastos/metabolismo , Histonas/metabolismo , Espermatocitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/fisiología , Ubiquitinación , Animales , Animales Recién Nacidos , Cromatina/metabolismo , Reparación del ADN/fisiología , Humanos , Masculino , Meiosis , Ratones , Fase Paquiteno/efectos de los fármacos , Alveolos Pulmonares/anomalías , Ubiquitina-Proteína Ligasas/deficiencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA