Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Genes Dev ; 32(23-24): 1562-1575, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30478249

RESUMEN

Heat shock factor 1 (HSF-1) and forkhead box O (FOXO) are key transcription factors that protect cells from various stresses. In Caenorhabditis elegans, HSF-1 and FOXO together promote a long life span when insulin/IGF-1 signaling (IIS) is reduced. However, it remains poorly understood how HSF-1 and FOXO cooperate to confer IIS-mediated longevity. Here, we show that prefoldin 6 (PFD-6), a component of the molecular chaperone prefoldin-like complex, relays longevity response from HSF-1 to FOXO under reduced IIS. We found that PFD-6 was specifically required for reduced IIS-mediated longevity by acting in the intestine and hypodermis. We showed that HSF-1 increased the levels of PFD-6 proteins, which in turn directly bound FOXO and enhanced its transcriptional activity. Our work suggests that the prefoldin-like chaperone complex mediates longevity response from HSF-1 to FOXO to increase the life span in animals with reduced IIS.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Factores de Transcripción Forkhead/metabolismo , Longevidad/genética , Chaperonas Moleculares/metabolismo , Factores de Transcripción/metabolismo , Animales , Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Intestinos/fisiología , Chaperonas Moleculares/genética , Unión Proteica , Transducción de Señal/genética , Tejido Subcutáneo/fisiología , Activación Transcripcional/genética
2.
Proc Natl Acad Sci U S A ; 119(51): e2214911119, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36512502

RESUMEN

The liver-specific microRNA, miR-122, plays an essential role in the propagation of hepatitis C virus (HCV) by binding directly to the 5'-end of its genomic RNA. Despite its significance for HCV proliferation, the host factors responsible for regulating miR-122 remain largely unknown. In this study, we identified the cellular RNA-binding protein, ELAVL1/HuR (embryonic lethal-abnormal vision-like 1/human antigen R), as critically contributing to miR-122 biogenesis by strong binding to the 3'-end of miR-122. The availability of ELAVL1/HuR was highly correlated with HCV proliferation in replicon, infectious, and chronically infected patient conditions. Furthermore, by screening a kinase inhibitor library, we identified rigosertib, an anticancer agent under clinical trials, as having both miR-122-modulating and anti-HCV activities that were mediated by its ability to target polo-like kinase 1 (PLK1) and subsequently modulate ELAVL1/HuR-miR-122 signaling. The expression of PLK1 was also highly correlated with HCV proliferation and the HCV positivity of HCC patients. ELAVL1/HuR-miR-122 signaling and its mediation of PLK1-dependent HCV proliferation were demonstrated by performing various rescue experiments and utilizing an HCV mutant with low dependency on miR-122. In addition, the HCV-inhibitory effectiveness of rigosertib was validated in various HCV-relevant conditions, including replicons, infected cells, and replicon-harboring mice. Rigosertib was highly effective in inhibiting the proliferation of not only wild-type HCVs, but also sofosbuvir resistance-associated substitution-bearing HCVs. Our study identifies PLK1-ELAVL1/HuR-miR-122 signaling as a regulatory axis that is critical for HCV proliferation, and suggests that a therapeutic approach targeting this host cell signaling pathway could be useful for treating HCV and HCV-associated diseases.


Asunto(s)
Carcinoma Hepatocelular , Hepatitis C , Neoplasias Hepáticas , MicroARNs , Animales , Humanos , Ratones , Carcinoma Hepatocelular/genética , Proliferación Celular , Proteína 1 Similar a ELAV/genética , Proteína 1 Similar a ELAV/metabolismo , Hepacivirus/fisiología , Hepatitis C/genética , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , MicroARNs/genética , MicroARNs/metabolismo , Transducción de Señal , Quinasa Tipo Polo 1
3.
Nucleic Acids Res ; 50(1): 306-321, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34904669

RESUMEN

Poly(A)-binding protein (PABP) is a translation initiation factor that interacts with the poly(A) tail of mRNAs. PABP bound to poly(A) stimulates translation by interacting with the eukaryotic initiation factor 4G (eIF4G), which brings the 3' end of an mRNA close to its 5' m7G cap structure through consecutive interactions of the 3'-poly(A)-PABP-eIF4G-eIF4E-5' m7G cap. PABP is a highly abundant translation factor present in considerably larger quantities than mRNA and eIF4G in cells. However, it has not been elucidated how eIF4G, present in limited cellular concentrations, is not sequestered by mRNA-free PABP, present at high cellular concentrations, but associates with PABP complexed with the poly(A) tail of an mRNA. Here, we report that RNA-free PABPs dimerize with a head-to-head type configuration of PABP, which interferes in the interaction between PABP and eIF4G. We identified the domains of PABP responsible for PABP-PABP interaction. Poly(A) RNA was shown to convert the PABP-PABP complex into a poly(A)-PABP complex, with a head-to-tail-type configuration of PABP that facilitates the interaction between PABP and eIF4G. Lastly, we showed that the transition from the PABP dimer to the poly(A)-PABP complex is necessary for the translational activation function.


Asunto(s)
Proteínas de Unión a Poli(A)/química , Línea Celular Tumoral , Factor 4G Eucariótico de Iniciación/metabolismo , Humanos , Proteínas de Unión a Poli(A)/metabolismo , Unión Proteica , Multimerización de Proteína , ARN Mensajero/metabolismo
4.
Int J Mol Sci ; 24(22)2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38003508

RESUMEN

FMRP is a multifunctional protein encoded by the Fragile X Messenger Ribonucleoprotein 1 gene (FMR1). The inactivation of the FMR1 gene results in fragile X syndrome (FXS), a serious neurodevelopmental disorder. FMRP deficiency causes abnormal neurite outgrowth, which is likely to lead to abnormal learning and memory capabilities. However, the mechanism of FMRP in modulating neuronal development remains unknown. We found that FMRP enhances the translation of 4EBP2, a neuron-specific form of 4EBPs that inactivates eIF4E by inhibiting the interaction between eIF4E and eIF4G. Depletion of 4EBP2 results in abnormal neurite outgrowth. Moreover, the impairment of neurite outgrowth upon FMRP depletion was overcome by the ectopic expression of 4EBP2. These results suggest that FMRP controls neuronal development by enhancing 4EBP2 expression at the translational level. In addition, treatment with 4EGI-1, a chemical that blocks eIF4E activity, restored neurite length in FMRP-depleted and 4EBP2-depleted cells. In conclusion, we discovered that 4EBP2 functions as a key downstream regulator of FMRP activity in neuronal development and that FMRP represses eIF4E activity by enhancing 4EBP2 translation.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Síndrome del Cromosoma X Frágil , Humanos , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Neuronas/metabolismo , Síndrome del Cromosoma X Frágil/genética , Diferenciación Celular/genética
5.
Molecules ; 28(12)2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37375202

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused devastation to human society through its high virulence, infectivity, and genomic mutations, which reduced the efficacy of vaccines. Here, we report the development of aptamers that effectively interfere with SARS-CoV-2 infection by targeting its spike protein, which plays a pivotal role in host cell entry of the virus through interaction with the viral receptor angiotensin-converting enzyme 2 (ACE2). To develop highly effective aptamers and to understand their mechanism in inhibiting viral infection, we determined the three-dimensional (3D) structures of aptamer/receptor-binding domain (RBD) complexes using cryogenic electron microscopy (cryo-EM). Moreover, we developed bivalent aptamers targeting two distinct regions of the RBD in the spike protein that directly interact with ACE2. One aptamer interferes with the binding of ACE2 by blocking the ACE2-binding site in RBD, and the other aptamer allosterically inhibits ACE2 by binding to a distinct face of RBD. Using the 3D structures of aptamer-RBD complexes, we minimized and optimized these aptamers. By combining the optimized aptamers, we developed a bivalent aptamer that showed a stronger inhibitory effect on virus infection than the component aptamers. This study confirms that the structure-based aptamer-design approach has a high potential in developing antiviral drugs against SARS-CoV-2 and other viruses.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Sitios de Unión , Unión Proteica
6.
J Cell Sci ; 132(2)2019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-30584064

RESUMEN

A large number of neuronal proteins must show correct spatiotemporal localization in order to carry out their critical functions. The mRNA transcript for the somatodendritic protein activity-regulated cytoskeleton-associated protein (Arc; also known as Arg3.1) contains two conserved introns in the 3' untranslated region (UTR), and was proposed to be a natural target for nonsense-mediated mRNA decay (NMD). However, a well-known NMD component Upf1 has differential roles in transcriptional and translational regulation of Arc gene expression. Specifically, Upf1 suppresses Arc transcription by enhancing destabilization of mRNAs encoding various transcription factors, including Mef2a. Upf1 also binds to the Arc 3'UTR, resulting in suppression of translation. Surprisingly, the Arc transcript escapes from Upf1-mediated NMD by binding to Ago2 (also known as miRISC), which blocks NMD and further suppresses Arc mRNA translation. Upf1 knockdown triggered sustained Arc expression, which contributes to Cofilin (also known as Cfl1) hyperphosphorylation and abnormal neuronal outgrowth and branching. Collectively, these data reveal that multiple levels of Upf1-mediated inhibition of Arc gene expression may allow neurons to more effectively respond to changes in neuronal activity.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuritas/metabolismo , Degradación de ARNm Mediada por Codón sin Sentido , Transactivadores/metabolismo , Transcripción Genética , Animales , Línea Celular , Cofilina 1/genética , Cofilina 1/metabolismo , Proteínas del Citoesqueleto/genética , Ratones , Proteínas del Tejido Nervioso/genética , Transactivadores/genética
7.
PLoS Pathog ; 15(9): e1008021, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31525236

RESUMEN

Hepatitis C virus (HCV) is a positive-strand RNA virus replicating in a membranous replication organelle composed primarily of double-membrane vesicles (DMVs) having morphological resemblance to autophagosomes. To define the mechanism of DMV formation and the possible link to autophagy, we conducted a yeast two-hybrid screening revealing 32 cellular proteins potentially interacting with HCV proteins. Among these was the Receptor for Activated Protein C Kinase 1 (RACK1), a scaffolding protein involved in many cellular processes, including autophagy. Depletion of RACK1 strongly inhibits HCV RNA replication without affecting HCV internal ribosome entry site (IRES) activity. RACK1 is required for the rewiring of subcellular membranous structures and for the induction of autophagy. RACK1 binds to HCV nonstructural protein 5A (NS5A), which induces DMV formation. NS5A interacts with ATG14L in a RACK1 dependent manner, and with the ATG14L-Beclin1-Vps34-Vps15 complex that is required for autophagosome formation. Both RACK1 and ATG14L are required for HCV DMV formation and viral RNA replication. These results indicate that NS5A participates in the formation of the HCV replication organelle through interactions with RACK1 and ATG14L.


Asunto(s)
Hepatitis C/metabolismo , Hepatitis C/virología , Proteínas de Neoplasias/metabolismo , Receptores de Cinasa C Activada/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Autofagosomas/metabolismo , Autofagosomas/virología , Autofagia , Proteínas Relacionadas con la Autofagia/metabolismo , Línea Celular , Hepacivirus/genética , Hepacivirus/patogenicidad , Hepacivirus/fisiología , Hepatitis C/patología , Hepatocitos/metabolismo , Hepatocitos/patología , Hepatocitos/virología , Interacciones Microbiota-Huesped/fisiología , Humanos , Redes y Vías Metabólicas , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , ARN Viral/biosíntesis , Técnicas del Sistema de Dos Híbridos , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Replicación Viral
8.
Cell Mol Life Sci ; 77(22): 4693-4708, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32030451

RESUMEN

During mitosis, translation of most mRNAs is strongly repressed; none of the several explanatory hypotheses suggested can fully explain the molecular basis of this phenomenon. Here we report that cyclin-dependent CDK11/p58-a serine/threonine kinase abundantly expressed during M phase-represses overall translation by phosphorylating a subunit (eIF3F) of the translation factor eIF3 complex that is essential for translation initiation of most mRNAs. Ectopic expression of CDK11/p58 strongly repressed cap-dependent translation, and knockdown of CDK11/p58 nullified the translational repression during M phase. We identified the phosphorylation sites in eIF3F responsible for M phase-specific translational repression by CDK11/p58. Alanine substitutions of CDK11/p58 target sites in eIF3F nullified its effects on cell cycle-dependent translational regulation. The mechanism of translational regulation by the M phase-specific kinase, CDK11/p58, has deep evolutionary roots considering the conservation of CDK11 and its target sites on eIF3F from C. elegans to humans.


Asunto(s)
Quinasas Ciclina-Dependientes/genética , Mitosis/genética , Biosíntesis de Proteínas/genética , Proteínas Serina-Treonina Quinasas/genética , Análogos de Caperuza de ARN/genética , División Celular/genética , Línea Celular Tumoral , Factor 3 de Iniciación Eucariótica/genética , Células HeLa , Humanos , Fosforilación/genética , ARN Mensajero/genética , Transducción de Señal/genética
9.
J Biol Chem ; 294(19): 7682-7691, 2019 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-30948510

RESUMEN

Most living creatures have a circadian rhythm that is generated by a precisely regulated transcriptional-translational feedback loop of clock genes. Brain and muscle ARNT-like 1 (BMAL1) is one of the core clock genes and transcription factors that represents a positive arm of this autoregulatory circadian clock system. Despite the indispensable role of BMAL1 in the circadian rhythm, the molecular mechanisms underlying translational control of BMAL1 are largely unknown. Here, using murine NIH-3T3 cells, gene constructs, and a variety of biochemical approaches, including RNAi- and luciferase reporter gene-based assays, along with immunoblotting, in vitro transcription, quantitative real-time PCR, and real-time bioluminescence experiments, we show that translation of Bmal1 is negatively regulated by an RNA-binding protein, heterogeneous nuclear ribonucleoprotein Q (hnRNP Q). Interestingly, we found that hnRNP Q rhythmically binds to a specific region of the Bmal1 mRNA 5' UTR and controls its time-dependent expression. Moreover, we demonstrate that knockdown of hnRNP Q modulates BMAL1 protein oscillation amplitude without affecting mRNA rhythmic patterns. Furthermore, hnRNP Q depletion increases the mRNA oscillation amplitudes of BMAL1-regulated target genes. Together, our results suggest that hnRNP Q plays a pivotal role in both Bmal1 translation and BMAL1-regulated gene expression.


Asunto(s)
Regiones no Traducidas 5' , Factores de Transcripción ARNTL/biosíntesis , Regulación de la Expresión Génica , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Factores de Transcripción ARNTL/genética , Animales , Ribonucleoproteínas Nucleares Heterogéneas/genética , Ratones , Células 3T3 NIH , Transporte de Proteínas/genética , ARN Mensajero/genética
10.
Analyst ; 145(4): 1473-1482, 2020 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-31868873

RESUMEN

It has been 100 years since the worst flu (Spanish flu) mankind has ever experienced. Rapid, accurate diagnosis and subtyping of flu are still an urgent unmet medical need. By using surrogate virus-based SELEX (viro-SELEX), we report here multiple advances incorporated into the field of flu diagnostics: (i) aptamers that can bind to the native virus well even though they cannot bind strongly to a recombinant protein (hemagglutinin); (ii) a couple of aptamers that can target a broad range of strains belonging to the H1N1 subtype and detect only the H1N1 subtype and nothing else; (iii) a highly sensitive lateral flow assay system (limit of detection is 0.08 HAU) using fluorescence-tagged aptamers. The viro-SELEX method of aptamer selection in conjunction with a fluorescent tag on aptamers is a very useful approach to develop highly sensitive, specific, portable, rapid, and quantitative point-of-care testing diagnostic tools for the future.


Asunto(s)
Aptámeros de Nucleótidos/metabolismo , Virus de la Influenza A/aislamiento & purificación , Técnica SELEX de Producción de Aptámeros/métodos , Proteínas Virales/metabolismo , Animales , Aptámeros de Nucleótidos/química , Colodión/química , Oro/química , Virus de la Influenza A/metabolismo , Límite de Detección , Nanopartículas del Metal/química , Células Sf9 , Spodoptera , Proteínas Virales/análisis
11.
Cell Mol Life Sci ; 75(23): 4287-4300, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30019215

RESUMEN

The initiator tRNA (Met-tRNA i Met ) at the P site of the small ribosomal subunit plays an important role in the recognition of an mRNA start codon. In bacteria, the initiator tRNA carrier, IF2, facilitates the positioning of Met-tRNA i Met on the small ribosomal subunit. Eukarya contain the Met-tRNA i Met carrier, eIF2 (unrelated to IF2), whose carrier activity is inhibited under stress conditions by the phosphorylation of its α-subunit by stress-activated eIF2α kinases. The stress-resistant initiator tRNA carrier, eIF2A, was recently uncovered and shown to load Met-tRNA i Met on the 40S ribosomal subunit associated with a stress-resistant mRNA under stress conditions. Here, we report that eIF2A interacts and functionally cooperates with eIF5B (a homolog of IF2), and we describe the functional domains of eIF2A that are required for its binding of Met-tRNA i Met , eIF5B, and a stress-resistant mRNA. The results indicate that the eukaryotic eIF5B-eIF2A complex functionally mimics the bacterial IF2 containing ribosome-, GTP-, and initiator tRNA-binding domains in a single polypeptide.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , ARN de Transferencia de Metionina/metabolismo , eIF-2 Quinasa/metabolismo , Secuencia de Aminoácidos , Animales , Western Blotting , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Factor 2 Eucariótico de Iniciación/genética , Factores Eucarióticos de Iniciación/genética , Células HEK293 , Humanos , Mutación , Unión Proteica , Interferencia de ARN , ARN de Transferencia de Metionina/genética , Homología de Secuencia de Aminoácido , eIF-2 Quinasa/genética
12.
Nucleic Acids Res ; 45(1): 296-310, 2017 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-27899592

RESUMEN

c-Src, a non-receptor protein tyrosine kinase, activates NF-κB and STAT3, which in turn triggers the transcription of anti-apoptosis- and cell cycle-related genes. c-Src protein regulates cell proliferation, cell motility and programmed cell death. And the elevated level of activated c-Src protein is related with solid tumor generation. Translation of c-Src mRNA is directed by an IRES element which mediates persistent translation under stress conditions when translation of most mRNAs is inhibited by a phosphorylation of the alpha subunit of eIF2 carrying the initiator tRNA (tRNAi) to 40S ribosomal subunit under normal conditions. The molecular basis of the stress-resistant translation of c-Src mRNA remained to be elucidated. Here, we report that eIF2A, an alternative tRNAi carrier, is responsible for the stress-resistant translation of c-Src mRNA. eIF2A facilitates tRNAi loading onto the 40S ribosomal subunit in a c-Src mRNA-dependent manner. And a direct interaction between eIF2A and a stem-loop structure (SL I) in the c-Src IRES is required for the c-Src IRES-dependent translation under stress conditions but not under normal conditions. Finally, we showed that the eIF2A-dependent translation of c-Src mRNA plays a pivotal role in cell proliferation under stress conditions.


Asunto(s)
Factor 2 Eucariótico de Iniciación/genética , Hepatocitos/metabolismo , Biosíntesis de Proteínas , ARN de Transferencia de Metionina/genética , ARN/genética , Familia-src Quinasas/genética , Biotinilación , Proteína Tirosina Quinasa CSK , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Factor 2 Eucariótico de Iniciación/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Humanos , FN-kappa B/genética , FN-kappa B/metabolismo , Conformación de Ácido Nucleico , Fosforilación , ARN/metabolismo , ARN de Transferencia de Metionina/metabolismo , Elementos de Respuesta , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Estrés Fisiológico , Tunicamicina/farmacología , Familia-src Quinasas/metabolismo
13.
Proc Natl Acad Sci U S A ; 112(4): 1041-6, 2015 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-25583496

RESUMEN

Eukaryotic translation initiation commences at the initiation codon near the 5' end of mRNA by a 40S ribosomal subunit, and the recruitment of a 40S ribosome to an mRNA is facilitated by translation initiation factors interacting with the m(7)G cap and/or poly(A) tail. The 40S ribosome recruited to an mRNA is then transferred to the AUG initiation codon with the help of translation initiation factors. To understand the mechanism by which the ribosome finds an initiation codon, we investigated the role of eIF4G in finding the translational initiation codon. An artificial polypeptide eIF4G fused with MS2 was localized downstream of the reporter gene through MS2-binding sites inserted in the 3' UTR of the mRNA. Translation of the reporter was greatly enhanced by the eIF4G-MS2 fusion protein regardless of the presence of a cap structure. Moreover, eIF4G-MS2 tethered at the 3' UTR enhanced translation of the second cistron of a dicistronic mRNA. The encephalomyocarditis virus internal ribosome entry site, a natural translational-enhancing element facilitating translation through an interaction with eIF4G, positioned downstream of a reporter gene, also enhanced translation of the upstream gene in a cap-independent manner. Finally, we mathematically modeled the effect of distance between the cap structure and initiation codon on the translation efficiency of mRNAs. The most plausible explanation for translational enhancement by the translational-enhancing sites is recognition of the initiation codon by the ribosome bound to the ribosome-recruiting sites through "RNA looping." The RNA looping hypothesis provides a logical explanation for augmentation of translation by enhancing elements located upstream and/or downstream of a protein-coding region.


Asunto(s)
Regiones no Traducidas 3'/fisiología , Codón Iniciador/metabolismo , Conformación de Ácido Nucleico , Iniciación de la Cadena Peptídica Traduccional/fisiología , Caperuzas de ARN/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Codón Iniciador/genética , Genes Reporteros , Células HEK293 , Humanos , Caperuzas de ARN/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/genética
14.
Proc Natl Acad Sci U S A ; 112(31): E4246-55, 2015 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-26195740

RESUMEN

The homeostatic maintenance of the genomic DNA is crucial for regulating aging processes. However, the role of RNA homeostasis in aging processes remains unknown. RNA helicases are a large family of enzymes that regulate the biogenesis and homeostasis of RNA. However, the functional significance of RNA helicases in aging has not been explored. Here, we report that a large fraction of RNA helicases regulate the lifespan of Caenorhabditis elegans. In particular, we show that a DEAD-box RNA helicase, helicase 1 (HEL-1), promotes longevity by specifically activating the DAF-16/forkhead box O (FOXO) transcription factor signaling pathway. We find that HEL-1 is required for the longevity conferred by reduced insulin/insulin-like growth factor 1 (IGF-1) signaling (IIS) and is sufficient for extending lifespan. We further show that the expression of HEL-1 in the intestine and neurons contributes to longevity. HEL-1 enhances the induction of a large fraction of DAF-16 target genes. Thus, the RNA helicase HEL-1 appears to promote longevity in response to decreased IIS as a transcription coregulator of DAF-16. Because HEL-1 and IIS are evolutionarily well conserved, a similar mechanism for longevity regulation via an RNA helicase-dependent regulation of FOXO signaling may operate in mammals, including humans.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Factores de Transcripción Forkhead/metabolismo , Longevidad , ARN Helicasas/metabolismo , Transducción de Señal , Animales , Secuencia de Bases , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Factores de Transcripción Forkhead/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Genes de Helminto , Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Mucosa Intestinal/metabolismo , Datos de Secuencia Molecular , Mutación/genética , Neuronas/metabolismo , Unión Proteica , ARN Helicasas/genética , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor de Insulina/metabolismo , Reproducción , Análisis de Secuencia de ARN , Regulación hacia Arriba
15.
RNA Biol ; 14(3): 370-377, 2017 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-28095120

RESUMEN

A recent study revealed that poly(A)-binding protein (PABP) bound to poly(A) RNA exhibits a sharply bent configuration at the linker region between RNA-recognition motif 2 (RRM2) and RRM3, whereas free PABP exhibits a highly flexible linear configuration. However, the physiological role of the bent structure of mRNA-bound PABP remains unknown. We investigated a role of the bent structure of PABP by constructing a PABP variant that fails to form the poly(A)-dependent bent structure but maintains its poly(A)-binding activity. We found that the bent structure of PABP/poly(A) complex is required for PABP's efficient interaction with eIF4G and eIF4G/eIF4E complex. Moreover, the mutant PABP had compromised translation activation function and failed to augment the formation of 80S translation initiation complex in an in vitro translation system. These results suggest that the bent conformation of PABP, which is induced by the interaction with 3' poly(A) tail, mediates poly(A)-dependent translation by facilitating the interaction with eIF4G and the eIF4G/eIF4E complex. The preferential binding of the eIF4G/eIF4E complex to the bent PABP/poly(A) complex seems to be a mechanism discriminating the mRNA-bound PABPs participating in translation from the idling mRNA-unbound PABPs.


Asunto(s)
Proteínas de Unión a Poli(A)/química , Proteínas de Unión a Poli(A)/metabolismo , Biosíntesis de Proteínas , Conformación Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factor 4G Eucariótico de Iniciación/metabolismo , Humanos , Complejos Multiproteicos/metabolismo , Mutación , Proteínas de Unión a Poli(A)/genética , Unión Proteica , Ribosomas/metabolismo , Relación Estructura-Actividad
16.
Nature ; 470(7334): 399-403, 2011 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-21331043

RESUMEN

Daily oscillations of gene expression underlie circadian behaviours in multicellular organisms. While attention has been focused on transcriptional and post-translational mechanisms, other post-transcriptional modes have been less clearly delineated. Here we report mutants of a novel Drosophila gene twenty-four (tyf) that show weak behavioural rhythms. Weak rhythms are accompanied by marked reductions in the levels of the clock protein Period (PER) as well as more modest effects on Timeless (TIM). Nonetheless, PER induction in pacemaker neurons can rescue tyf mutant rhythms. TYF associates with a 5'-cap-binding complex, poly(A)-binding protein (PABP), as well as per and tim transcripts. Furthermore, TYF activates reporter expression when tethered to reporter messenger RNA even in vitro. Taken together, these data indicate that TYF potently activates PER translation in pacemaker neurons to sustain robust rhythms, revealing a new and important role for translational control in the Drosophila circadian clock.


Asunto(s)
Relojes Circadianos/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Genes de Insecto/genética , Proteínas Circadianas Period/biosíntesis , Biosíntesis de Proteínas/fisiología , Animales , Relojes Circadianos/fisiología , Ritmo Circadiano/genética , Ritmo Circadiano/fisiología , Proteínas de Drosophila/biosíntesis , Proteínas de Drosophila/genética , Genes Reporteros/genética , Mutación/genética , Neuronas/metabolismo , Neuronas/fisiología , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Proteínas de Unión a Poli(A)/metabolismo , Unión Proteica , Biosíntesis de Proteínas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regulación hacia Arriba
17.
Nucleic Acids Res ; 43(16): 7688-701, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26245346

RESUMEN

Due to their high affinity and specificity, aptamers have been widely used as effective inhibitors in clinical applications. However, the ability to activate protein function through aptamer-protein interaction has not been well-elucidated. To investigate their potential as target-specific agonists, we used SELEX to generate aptamers to the insulin receptor (IR) and identified an agonistic aptamer named IR-A48 that specifically binds to IR, but not to IGF-1 receptor. Despite its capacity to stimulate IR autophosphorylation, similar to insulin, we found that IR-A48 not only binds to an allosteric site distinct from the insulin binding site, but also preferentially induces Y1150 phosphorylation in the IR kinase domain. Moreover, Y1150-biased phosphorylation induced by IR-A48 selectively activates specific signaling pathways downstream of IR. In contrast to insulin-mediated activation of IR, IR-A48 binding has little effect on the MAPK pathway and proliferation of cancer cells. Instead, AKT S473 phosphorylation is highly stimulated by IR-A48, resulting in increased glucose uptake both in vitro and in vivo. Here, we present IR-A48 as a biased agonist able to selectively induce the metabolic activity of IR through allosteric binding. Furthermore, our study also suggests that aptamers can be a promising tool for developing artificial biased agonists to targeted receptors.


Asunto(s)
Aptámeros de Nucleótidos/farmacología , Receptor de Insulina/agonistas , Transducción de Señal , Adipocitos/metabolismo , Regulación Alostérica , Sitio Alostérico , Animales , Aptámeros de Nucleótidos/metabolismo , Glucemia/efectos de los fármacos , Línea Celular , Proliferación Celular , Glucosa/metabolismo , Humanos , Células MCF-7 , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Receptor de Insulina/metabolismo
18.
Genes Dev ; 23(17): 2033-45, 2009 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-19648179

RESUMEN

During or right after mRNA export via the nuclear pore complex (NPC) in mammalian cells, mRNAs undergo translation mediated by nuclear cap-binding proteins 80 and 20 (CBP80/20). After CBP80/20-dependent translation, CBP80/20 is replaced by cytoplasmic cap-binding protein eIF4E, which directs steady-state translation. Nonsense-mediated mRNA decay (NMD), one of the best-characterized mRNA surveillance mechanisms, has been shown to occur on CBP80/20-bound mRNAs. However, despite the tight link between CBP80/20-dependent translation and NMD, the underlying molecular mechanism and cellular factors that mediate CBP80/20-dependent translation remain obscure. Here, we identify a new MIF4G domain-containing protein, CTIF (CBP80/20-dependent translation initiation factor). CTIF interacts directly with CBP80 and is part of the CBP80/20-dependent translation initiation complex. Depletion of endogenous CTIF from an in vitro translation system selectively blocks the translation of CBP80-bound mRNAs, while addition of purified CTIF restores it. Accordingly, down-regulation of endogenous CTIF abrogates NMD. Confocal microscopy shows that CTIF is localized to the perinuclear region. Our observations demonstrate the existence of CBP80/20-dependent translation and support the idea that CBP80/20-dependent translation is mechanistically different from steady-state translation through identification of a specific cellular protein, CTIF.


Asunto(s)
Factor 4G Eucariótico de Iniciación/genética , Regulación de la Expresión Génica , Complejo Proteico Nuclear de Unión a la Caperuza/metabolismo , Factores de Iniciación de Péptidos/genética , Animales , Células COS , Línea Celular , Núcleo Celular/metabolismo , Chlorocebus aethiops , Regulación hacia Abajo , Células HeLa , Humanos , Estructura Terciaria de Proteína , Estabilidad del ARN , ARN Mensajero/metabolismo
19.
J Virol ; 90(6): 3044-55, 2015 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-26719248

RESUMEN

UNLABELLED: Hepatitis C virus (HCV) is one of the leading causes of chronic liver inflammatory disease (hepatitis), which often leads to more severe diseases, such as liver fibrosis, cirrhosis, and hepatocellular carcinoma. Liver fibrosis, in particular, is a major pathogenic consequence of HCV infection, and transforming growth factor ß1 (TGF-ß1) plays a key role in its pathogenesis. Several HCV proteins have been suggested to either augment or suppress the expression of TGF-ß1 by HCV-infected cells. Here, we report that TGF-ß1 levels are elevated in HCV-infected hepatocytes cultured in vitro and in liver tissue of HCV patients. Notably, the level of TGF-ß1 in media from in vitro-cultured HCV-infected hepatocytes was high enough to activate primary hepatic stellate cells isolated from rats. This indicates that TGF-ß1 secreted by HCV-infected hepatocytes is likely to play a key role in the liver fibrosis observed in HCV patients. Moreover, we showed that HCV E2 protein triggers the production of TGF-ß1 by HCV-infected cells through overproduction of glucose-regulated protein 94 (GRP94). IMPORTANCE: Hepatic fibrosis is a critical step in liver cirrhosis caused by hepatitis C virus infection. It is already known that immune cells, including Kupffer cells, mediate liver fibrosis. Recently, several papers have suggested that HCV-infected hepatocytes also significantly produce TGF-ß1. Here, we provide the first examination of TGF-ß1 levels in the hepatocytes of HCV patients. Using an HCV culture system, we showed that HCV infection increases TGF-ß1 production in hepatocytes. Furthermore, we confirmed that the amount of TGF-ß1 secreted by HCV-infected hepatocytes was sufficient to activate primary hepatic stellate cells. To understand the molecular basis of TGF-ß1 production in HCV-infected hepatocytes, we used HCV replicons and various stable cell lines. Finally, we elucidated that HCV E2 triggered TGF-ß1 secretion via GRP94 mediated NF-κB activation. This study contributes to the understanding of liver fibrosis by HCV and suggests a new potential target (GRP94) for blocking liver cirrhosis in HCV patients.


Asunto(s)
Hepacivirus/fisiología , Hepatocitos/virología , Interacciones Huésped-Patógeno , Glicoproteínas de Membrana/metabolismo , Factor de Crecimiento Transformador beta1/biosíntesis , Proteínas del Envoltorio Viral/metabolismo , Animales , Células Cultivadas , Medios de Cultivo Condicionados , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/fisiología , Hepatitis C/complicaciones , Humanos , Cirrosis Hepática/patología , Ratas Sprague-Dawley
20.
RNA Biol ; 13(1): 1-5, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26515582

RESUMEN

The 40S ribosomal subunit cannot directly recognize the start codon of eukaryotic mRNAs. Instead, it recognizes the start codon after its association with the 5'-cap structure via translation initiation factors. Base-by-base inspection of the 5'UTR by a scanning ribosome is the generally accepted hypothesis of start codon selection. As part of an effort to confirm the underlying mechanism of start codon selection by the 40S ribosome, we investigated the role of eIF4G, which participates in the recruitment of 40S ribosomes to various translation enhancers, such as 5'-cap structure, poly(A) tail, and several internal ribosome entry sites. We found that an artificial translation factor composed of recombinant eIF4G fused with MS2 greatly enhanced translation of an upstream reporter gene when it was tethered to the 3'UTR. These data suggest that the 40S ribosome recruited to a translation enhancer can find the start codon by looping of the intervening RNA segment. The 'RNA-looping' hypothesis of translation start codon recognition was further supported by an analysis of the effect of 5'UTR length on translation efficiency and the mathematically predicted probability of RNA-loop-mediated interactions between the start codon and the 40S ribosome associated at the 5'-end.


Asunto(s)
Biosíntesis de Proteínas , Caperuzas de ARN/metabolismo , ARN Mensajero/metabolismo , Codón Iniciador , Factor 4G Eucariótico de Iniciación/genética , Factor 4G Eucariótico de Iniciación/metabolismo , Sitios Internos de Entrada al Ribosoma , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA