Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(15): e2111445119, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35377804

RESUMEN

Volumetric muscle loss (VML) overwhelms the innate regenerative capacity of mammalian skeletal muscle (SkM), leading to numerous disabilities and reduced quality of life. Immune cells are critical responders to muscle injury and guide tissue resident stem cell­ and progenitor-mediated myogenic repair. However, how immune cell infiltration and intercellular communication networks with muscle stem cells are altered following VML and drive pathological outcomes remains underexplored. Herein, we contrast the cellular and molecular mechanisms of VML injuries that result in the fibrotic degeneration or regeneration of SkM. Following degenerative VML injuries, we observed the heightened infiltration of natural killer (NK) cells as well as the persistence of neutrophils beyond 2 wk postinjury. Functional validation of NK cells revealed an antagonistic role in neutrophil accumulation in part via inducing apoptosis and CCR1-mediated chemotaxis. The persistent infiltration of neutrophils in degenerative VML injuries was found to contribute to impairments in muscle stem cell regenerative function, which was also attenuated by transforming growth factor beta 1 (TGFß1). Blocking TGFß signaling reduced neutrophil accumulation and fibrosis and improved muscle-specific force. Collectively, these results enhance our understanding of immune cell­stem cell cross talk that drives regenerative dysfunction and provide further insight into possible avenues for fibrotic therapy exploration.


Asunto(s)
Células Asesinas Naturales , Músculo Esquelético , Enfermedades Musculares , Neutrófilos , Regeneración , Células Satélite del Músculo Esquelético , Animales , Fibrosis , Células Asesinas Naturales/inmunología , Ratones , Músculo Esquelético/inmunología , Músculo Esquelético/patología , Enfermedades Musculares/inmunología , Enfermedades Musculares/patología , Infiltración Neutrófila , Neutrófilos/inmunología , Regeneración/inmunología , Células Satélite del Músculo Esquelético/inmunología , Factor de Crecimiento Transformador beta/metabolismo
2.
EMBO J ; 37(24)2018 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-30446598

RESUMEN

A finely tuned balance of self-renewal, differentiation, proliferation, and survival governs the pool size and regenerative capacity of blood-forming hematopoietic stem and progenitor cells (HSPCs). Here, we report that protein kinase C delta (PKCδ) is a critical regulator of adult HSPC number and function that couples the proliferative and metabolic activities of HSPCs. PKCδ-deficient mice showed a pronounced increase in HSPC numbers, increased competence in reconstituting lethally irradiated recipients, enhanced long-term competitive advantage in serial transplantation studies, and an augmented HSPC recovery during stress. PKCδ-deficient HSPCs also showed accelerated proliferation and reduced apoptosis, but did not exhaust in serial transplant assays or induce leukemia. Using inducible knockout and transplantation models, we further found that PKCδ acts in a hematopoietic cell-intrinsic manner to restrict HSPC number and bone marrow regenerative function. Mechanistically, PKCδ regulates HSPC energy metabolism and coordinately governs multiple regulators within signaling pathways implicated in HSPC homeostasis. Together, these data identify PKCδ as a critical regulator of HSPC signaling and metabolism that acts to limit HSPC expansion in response to physiological and regenerative demands.


Asunto(s)
Apoptosis , Médula Ósea/enzimología , Proliferación Celular , Células Madre Hematopoyéticas/enzimología , Proteína Quinasa C-delta/metabolismo , Transducción de Señal , Animales , Células Madre Hematopoyéticas/citología , Ratones , Ratones Noqueados , Proteína Quinasa C-delta/genética
3.
FASEB J ; 35(2): e21340, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33455027

RESUMEN

The purpose of this study is to determine whether moderate aerobic exercise training improves high-fat diet-induced alterations in mitochondrial function and structure in the skeletal muscle. Male 4-week-old C57BL/6 mice were randomly divided into four groups: control (CON), control plus exercise (CON + EX), high-fat diet (HFD), and high-fat diet plus exercise (HFD + EX). After obesity was induced by 20 weeks of 60% HFD, treadmill exercise training was performed at 13-16 m/min, 40-50 min/day, and 6 days/week for 12 weeks. Mitochondrial structure, function, and dynamics, and mitophagy were analyzed in the skeletal muscle fibers from the red gastrocnemius. Exercise training increased mitochondrial number and area and reduced high-fat diet-induced obesity and hyperglycemia. In addition, exercise training attenuated mitochondrial dysfunction in the permeabilized myofibers, indicating that HFD-induced decrease of mitochondrial O2 respiration and Ca2+ retention capacity and increase of mitochondrial H2 O2 emission were attenuated in the HFD + EX group compared to the HFD group. Exercise also ameliorated HFD-induced imbalance of mitochondrial fusion and fission, demonstrating that HFD-induced decrease in fusion protein levels was elevated, and increase in fission protein levels was reduced in the HFD + EX groups compared with the HFD group. Moreover, dysregulation of mitophagy induced by HFD was mitigated in the HFD + EX group, indicating a decrease in PINK1 protein level. Our findings demonstrated that moderate aerobic exercise training mitigated obesity-induced insulin resistance by improving mitochondrial function, and reversed obesity-induced mitochondrial structural damage by improving mitochondrial dynamics and mitophagy, suggesting that moderate aerobic exercise training may play a therapeutic role in protecting the skeletal muscle against mitochondrial impairments and insulin resistance induced by obesity.


Asunto(s)
Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Obesidad/terapia , Condicionamiento Físico Animal/métodos , Animales , Señalización del Calcio , Respiración de la Célula , Dieta Alta en Grasa/efectos adversos , Masculino , Ratones , Ratones Endogámicos C57BL , Dinámicas Mitocondriales , Obesidad/etiología , Obesidad/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo
4.
Biochem Biophys Res Commun ; 534: 720-726, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33218686

RESUMEN

Cu/Zn Superoxide Dismutase (Sod1) catalyzes the disproportionation of cytotoxic superoxide radicals (O2•-) into oxygen (O2) and hydrogen peroxide (H2O2), a key signaling molecule. In Saccharomyces cerevisiae, we previously discovered that Sod1 participates in an H2O2-mediated redox signaling circuit that links nutrient availability to the control of energy metabolism. In response to glucose and O2, Sod1-derived H2O2 stabilizes a pair of conserved plasma membrane kinases - yeast casein kinase 1 and 2 (Yck1/2) - that signal glycolytic growth and the repression of respiration. The Yck1/2 homolog in humans, casein kinase 1-γ (CK1γ), is an integral component of the Wingless and Int-1 (Wnt) signaling pathway, which is essential for regulating cell fate and proliferation in early development and adult tissue and is dysregulated in many cancers. Herein, we establish the conservation of the SOD1/YCK1 redox signaling axis in humans by finding that SOD1 regulates CK1γ expression in human embryonic kidney 293 (HEK293) cells and is required for canonical Wnt signaling and Wnt-dependent cell proliferation.


Asunto(s)
Superóxido Dismutasa-1/metabolismo , Vía de Señalización Wnt/fisiología , Quinasa de la Caseína I/metabolismo , Proliferación Celular/fisiología , Regulación de la Expresión Génica , Células HEK293 , Humanos , Interferencia de ARN , Superóxido Dismutasa-1/genética
5.
Proc Natl Acad Sci U S A ; 115(42): E9944-E9952, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30275336

RESUMEN

Dysfunctional endothelium causes more disease than any other cell type. Systemically administered RNA delivery to nonliver tissues remains challenging, in large part because there is no high-throughput method to identify nanoparticles that deliver functional mRNA to cells in vivo. Here we report a system capable of simultaneously quantifying how >100 lipid nanoparticles (LNPs) deliver mRNA that is translated into functional protein. Using this system (named FIND), we measured how >250 LNPs delivered mRNA to multiple cell types in vivo and identified 7C2 and 7C3, two LNPs that efficiently deliver siRNA, single-guide RNA (sgRNA), and mRNA to endothelial cells. The 7C3 delivered Cas9 mRNA and sgRNA to splenic endothelial cells as efficiently as hepatocytes, distinguishing it from LNPs that deliver Cas9 mRNA and sgRNA to hepatocytes more than other cell types. These data demonstrate that FIND can identify nanoparticles with novel tropisms in vivo.


Asunto(s)
Sistemas CRISPR-Cas , Células Endoteliales/metabolismo , Edición Génica , Técnicas de Transferencia de Gen , Lípidos/química , Nanopartículas/administración & dosificación , ARN Guía de Kinetoplastida/genética , ARN Mensajero/genética , Animales , Células Cultivadas , Células Endoteliales/citología , Células HEK293 , Hepatocitos/citología , Hepatocitos/metabolismo , Ensayos Analíticos de Alto Rendimiento , Humanos , Ratones , Ratones Endogámicos C57BL , Nanopartículas/química , ARN Guía de Kinetoplastida/química , ARN Mensajero/química
6.
Adv Funct Mater ; 30(46)2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-38053980

RESUMEN

Exposure of aged mice to a young systemic milieu revealed remarkable rejuvenation effects on aged tissues, including skeletal muscle. Although some candidate factors have been identified, the exact identity and the underlying mechanisms of putative rejuvenating factors remain elusive, mainly due to the complexity of in vivo parabiosis. Here, we present an in vitro muscle parabiosis system that integrates young- and old-muscle stem cell vascular niche on a three-dimensional microfluidic platform designed to recapitulate key features of native muscle stem cell microenvironment. This innovative system enables mechanistic studies of cellular dynamics and molecular interactions within the muscle stem cell niche, especially in response to conditional extrinsic stimuli of local and systemic factors. We demonstrate that vascular endothelial growth factor (VEGF) signaling from endothelial cells and myotubes synergistically contribute to the rejuvenation of the aged muscle stem cell function. Moreover, with the adjustable on-chip system, we can mimic both blood transfusion and parabiosis and detect the time-varying effects of anti-geronic and pro-geronic factors in a single organ or multi-organ systems. Our unique approach presents a complementary in vitro model to supplement in vivo parabiosis for identifying potential anti-geronic factors responsible for revitalizing aging organs.

7.
Bioorg Med Chem ; 28(6): 115345, 2020 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-32061484

RESUMEN

Signal transducer and activator of transcription 3 (STAT3) is an oncogenic transcription factor which has been recognized as a promising cancer therapeutic target. Small molecule pyrimethamine (PYM) is a known direct inhibitor of activated STAT3 and it is currently under clinical trial. Also, histone deacetylase (HDAC) inhibition has been shown to indirectly attenuate STAT3 signaling through inhibition of STAT3 activation. Herein we described the design and biological profiling of two classes of PYM-conjugated HDAC inhibitors (HDACi). We observed that the class I PYM-HDACi compounds 12a-c potently inhibited HDACs 1 and 6 in cell free assays while a lead class II PYM-HDACi compound 23 showed a strong HDAC 6 selective inhibition. In a cell-based assay, 12a-c are preferentially cytotoxic to MDA-MB-231, a TNBC cell line that is highly STAT3-dependent, while 23 showed no such selective toxicity. Subsequent target validation studies revealed that a representative class I PYM-HDACi compound 12c elicited a signature of HDAC and STAT3 pathway inhibition intracellularly. Collectively, these data suggest that PYM-HDACi compounds are promising leads to develop targeted therapy for TNBC.


Asunto(s)
Antineoplásicos/farmacología , Diseño de Fármacos , Inhibidores de Histona Desacetilasas/farmacología , Pirimetamina/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Chlorocebus aethiops , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores de Histona Desacetilasas/síntesis química , Inhibidores de Histona Desacetilasas/química , Humanos , Estructura Molecular , Pirimetamina/síntesis química , Pirimetamina/química , Factor de Transcripción STAT3/antagonistas & inhibidores , Factor de Transcripción STAT3/metabolismo , Relación Estructura-Actividad , Neoplasias de la Mama Triple Negativas/metabolismo
8.
Med Sci Sports Exerc ; 55(3): 376-388, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36251370

RESUMEN

INTRODUCTION: Metabolic disorder promotes premature senescence and poses more severe cardiac dysfunction in females than males. Although endurance exercise (EXE) has been known to confer cardioprotection against metabolic diseases, whether EXE-induced cardioprotection is associated with mitigating senescence in females remains unknown. Thus, the aim of the present study was to examine metabolic disorder-induced cardiac anomalies (cellular senescence, metabolic signaling, and autophagy) using a mouse model of obese/type 2 diabetes induced by a high-fat/high-fructose (HFD/HF) diet. METHODS: Female C57BL/6 mice (10 wk old) were assigned to three groups ( n = 11/group): normal diet group (CON), HFD/HF group, and HFD/HF diet + endurance exercise (HFD/HF + EXE) group. Upon confirmation of hyperglycemia and overweight after 12 wk of HFD/HF diet, mice assigned to HFD/HF + EXE group started treadmill running exercise (60 min·d -1 , 5 d·wk -1 for 12 wk), with HFD/HF diet continued. RESULTS: EXE ameliorated HFD/HF-induced body weight gain and hyperglycemia, improved insulin signaling and glucose transporter 4 (GLUT4) levels, and counteracted cardiac disruption. EXE reversed HFD/HF-induced myocyte premature senescence (e.g., prevention of p53, p21, p16, and lipofuscin accumulation), resulting in suppression of a senescence-associated secretory phenotype such as inflammation (tumor necrosis factor α and interleukin-1ß) and oxidative stress (protein carbonylation). Moreover, EXE restored HFD/HF-induced autophagy flux deficiency, evidenced by increased LC3-II concomitant with p62 reduction and restoration of lysosome function-related proteins (LAMP2, CATHEPSIN L, TFEB, and SIRT1). More importantly, EXE retrieved HFD/HF-induced apoptosis arrest (e.g., increased cleaved CASPASE3, PARP, and TUNEL-positive cells). CONCLUSIONS: Our study demonstrated that EXE-induced antisenescence phenotypes, autophagy restoration, and promotion of propitiatory cell removal by apoptosis play a crucial role in cardiac protection against metabolic distress-induced cardiac disruption.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hiperglucemia , Enfermedades Metabólicas , Condicionamiento Físico Animal , Animales , Masculino , Ratones , Femenino , Dieta Alta en Grasa/efectos adversos , Ratones Endogámicos C57BL , Autofagia
9.
Acta Biomater ; 168: 277-285, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37453552

RESUMEN

Duchenne muscular dystrophy (DMD) causes patients to suffer from ambulatory disability and cardiorespiratory failure, the latter of which leads to premature death. Due to its role in respiration, the diaphragm is an important muscle for study. A common method for evaluating diaphragm function is ex vivo force testing, which only allows for an end point measurement. In contrast, ultrasound shear wave elastography imaging (US-SWEI) can assess diaphragm function over time; however, US-SWEI studies in dystrophic patients to date have focused on the limbs without preclinical studies. In this work, we used US-SWEI to estimate the shear wave speed (SWS) in diaphragm muscles of healthy (WT) mice, mdx mice, and mdx mice haploinsufficient for utrophin (mdx-utr) at 6 and 12 months of age. Diaphragms were then subjected to ex vivo force testing and histological analysis at 12 months of age. Between 6 and 12 months, a 23.8% increase in SWS was observed in WT mice and a 27.8% increase in mdx mice, although no significant difference was found in mdx-utr mice. Specific force generated by mdx-utr diaphragms was lower than that of WT diaphragms following twitch stimulus. A strong correlation between SWS and collagen deposition was observed, as well as between SWS and muscle fiber size. Together, these data demonstrate the ability of US-SWEI to evaluate dystrophic diaphragm functionality over time and predict the biochemical and morphological make-up of the diaphragm. Additionally, our results highlight the advantage of US-SWEI over ex vivo testing by obtaining longitudinal measurements in the same subject. STATEMENT OF SIGNIFICANCE: In DMD patients, muscles experience cycles of regeneration and degeneration that contribute to chronic inflammation and muscle weakness. This pathology only worsens with time and leads to muscle wasting, including in respiratory and cardiac muscles. Because respiratory failure is a major contributor to premature death in DMD patients, the diaphragm muscle is an important muscle to evaluate and treat over time. Currently, diaphragm function is assessed using ex vivo force testing, a technique that only allows measurement at sacrifice. In contrast, ultrasonography, particularly shear wave elasticity imaging (USSWEI), is a promising tool for longitudinal assessment; however, most US-SWEI in DMD patients aimed for limb muscles only with the absence of preclinical studies. This work broadens the applications of US-SWE imaging by demonstrating its ability to track properties and function of dystrophic diaphragm muscles longitudinally in multiple dystrophic mouse models.


Asunto(s)
Diafragma , Distrofia Muscular de Duchenne , Ratones , Animales , Ratones Endogámicos mdx , Diafragma/diagnóstico por imagen , Diafragma/patología , Ratones Endogámicos C57BL , Distrofia Muscular de Duchenne/diagnóstico por imagen , Distrofia Muscular de Duchenne/patología , Músculo Esquelético/patología , Elasticidad , Modelos Animales de Enfermedad
10.
Biosens Bioelectron ; 241: 115650, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37717424

RESUMEN

Atherosclerosis is a prominent cause of coronary artery disease and broader cardiovascular diseases, the leading cause of death worldwide. Angioplasty and stenting is a common treatment, but in-stent restenosis, where the artery re-narrows, is a frequent complication. Restenosis is detected through invasive procedures and is not currently monitored frequently for patients. Here, we report an implantable vascular bioelectronic device using a newly developed miniaturized strain sensor via microneedle printing methods. A capillary-based printing system achieves high-resolution patterning of a soft, capacitive strain sensor. Ink and printing parameters are evaluated to create a fully printed sensor, while sensor design and sensing mechanism are studied to enhance sensitivity and minimize sensor size. The sensor is integrated with a wireless vascular stent, offering a biocompatible, battery-free, wireless monitoring system compatible with conventional catheterization procedures. The vascular sensing system is demonstrated in an artery model for monitoring restenosis progression. Collectively, the artery implantable bioelectronic system shows the potential for wireless, real-time monitoring of various cardiovascular diseases and stent-integrated sensing/treatments.

11.
Acta Biomater ; 171: 406-416, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37739252

RESUMEN

A visible light- and reactive oxygen species (ROS)-responsive pressure/strain sensor based on carbon dot (CD)-loaded conductive hydrogel was developed for detecting high-fat diet (HFD) and preventing the risk of non-alcoholic fatty liver disease. The designed nanoparticle consisted of a diselenide polymer dot (dsPD) loaded with a visible light-responsive CD to form dsPD@CD (DSCD). The influence of visible light irradiation and ROS on DSCD facilitated the electron transport, enhancing the conductivity of DSCD-embedded hydrogel (DSCD hydrogel) from 1.3 to 35.9 mS/m. Alternatively, the tensile modulus of the DSCD hydrogel enhanced to 223 % after light-induced ROS treatment, which simultaneously impacted the capacitive response (120 %). The hydrogel implantation into inguinal white adipose tissue of HFD mice showed 82 % higher conductivity and 83 % enhanced pressure sensing response to HFD-generated high ROS levels compared with the normal diet-fed mice. Additionally, the ROS scavenging activity of DSCD hydrogel was confirmed by the downregulation of ROS-responsive genes, such as Sod2, Nrf2, and catalase (Cat) in murine primary hepatocytes isolated from fatty liver-induced mice. In addition, in vivo animal studies also confirmed the suppression of hepatic lipogenesis, as shown by decreased Pparγ and Fasn expression and hypertrophy of adipocytes in HFD mice. The distinguishable real-time wireless resistance response observed with pressure sensing indicates the potential application of the device for monitoring the risk of non-alcoholic fatty liver disease. STATEMENT OF SIGNIFICANCE: A visible-light-induced ROS-responsive carbon dot-loaded conductive hydrogel was developed for the detection of HFD-induced alterations in ROS levels by evaluating the conductivity and electrochemical responses with applied pressure/strain. The implanted hydrogel facilitates the recovery of the inflated adipocytes induced by NAFLD, which reduces fat accumulation in the liver, preventing the risk of NAFLD. Real-time detection based on the resistance response during local compression of the hydrogel is possibly performed utilizing a wireless sensing device, demonstrating the ease of NAFLD monitoring.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Hidrogeles/farmacología , Hidrogeles/metabolismo , Hígado/metabolismo , Tejido Adiposo/metabolismo , Carbono , Ratones Endogámicos C57BL
12.
Commun Biol ; 6(1): 749, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37468760

RESUMEN

Volumetric muscle loss (VML) results in permanent functional deficits and remains a substantial regenerative medicine challenge. A coordinated immune response is crucial for timely myofiber regeneration, however the immune response following VML has yet to be fully characterized. Here, we leveraged dimensionality reduction and pseudo-time analysis techniques to elucidate the cellular players underlying a functional or pathological outcome as a result of subcritical injury or critical VML in the murine quadriceps, respectively. We found that critical VML resulted in a sustained presence of M2-like and CD206hiLy6Chi 'hybrid' macrophages whereas subcritical defects resolved these populations. Notably, the retained M2-like macrophages from critical VML injuries presented with aberrant cytokine production which may contribute to fibrogenesis, as indicated by their co-localization with fibroadipogenic progenitors (FAPs) in areas of collagen deposition within the defect. Furthermore, several T cell subpopulations were significantly elevated in critical VML compared to subcritical injuries. These results demonstrate a dysregulated immune response in critical VML that is unable to fully resolve the chronic inflammatory state and transition to a pro-regenerative microenvironment within the first week after injury. These data provide important insights into potential therapeutic strategies which could reduce the immune cell burden and pro-fibrotic signaling characteristic of VML.


Asunto(s)
Músculo Esquelético , Enfermedades Musculares , Ratones , Animales , Músculo Esquelético/patología , Regeneración , Enfermedades Musculares/patología , Enfermedades Musculares/terapia , Medicina Regenerativa , Colágeno
13.
Tissue Eng Regen Med ; 19(2): 253-261, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35334091

RESUMEN

Skeletal muscle has an innate regenerative capacity to restore their structure and function following acute damages and injuries. However, in congenital muscular dystrophies, large volumetric muscle loss, cachexia, or aging, the declined regenerative capacity of skeletal muscle results in muscle wasting and functional impairment. Recent studies indicate that muscle mass and function are closely correlated with morbidity and mortality due to the large volume and location of skeletal muscle. However, the options for treating neuromuscular disorders are limited. Biomedical engineering strategies such as nanotechnologies have been implemented to address this issue.In this review, we focus on recent studies leveraging nano-sized materials for regeneration of skeletal muscle. We look at skeletal muscle pathologies and describe various proof-of-concept and pre-clinical studies that have used nanomaterials, with a focus on how nano-sized materials can be used for skeletal muscle regeneration depending on material dimensionality.Depending on the dimensionality of nano-sized materials, their application have been changed because of their different physical and biochemical properties.Nanomaterials have been spotlighted as a great candidate for addressing the unmet needs of regenerative medicine. Nanomaterials could be applied to several types of tissues and diseases along with the unique characteristics of nanomaterials. However, when confined to muscle tissue, the targets of nanomaterial applications are limited and can be extended in future research.


Asunto(s)
Nanoestructuras , Regeneración , Músculo Esquelético/patología , Medicina Regenerativa , Cicatrización de Heridas
14.
Sci Rep ; 12(1): 15838, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36151131

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is associated with increased oxidative stress that leads to hepatocyte and mitochondrial damage. In this study we investigated the mechanisms involved in the induction of oxidative stress and impairment of mitochondrial quality control and mitophagy in hepatocytes by the saturated fatty acid palmitate and Western diet feeding in mice and if their harmful effects could be reversed by the neurotrophic factor glial cell derived neurotrophic factor (GDNF). Western diet (WD)-feeding increased hepatic lipid peroxidation in control mice and, in vitro palmitate induced oxidative stress and impaired the mitophagic clearance of damaged mitochondria in hepatocytes. This was accompanied by reductions in hepatocyte sirtuin 3 (SIRT3) deacetylase activity, gene expression and protein levels as well as in superoxide dismutase enzyme activity. These reductions were reversed in the liver of Western diet fed GDNF transgenic mice and in hepatocytes exposed to palmitate in the presence of GDNF. We demonstrate an important role for Western diet and palmitate in inducing oxidative stress and impairing mitophagy in hepatocytes and an ability of GDNF to prevent this. These findings suggest that GDNF or its agonists may be a potential therapy for the prevention or treatment of NAFLD.


Asunto(s)
Factor Neurotrófico Derivado de la Línea Celular Glial , Enfermedad del Hígado Graso no Alcohólico , Estrés Oxidativo , Sirtuina 3 , Animales , Dieta Alta en Grasa , Dieta Occidental/efectos adversos , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Hepatocitos/metabolismo , Ratones , Ratones Transgénicos , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Palmitatos/efectos adversos , Sirtuina 3/genética , Sirtuina 3/metabolismo , Superóxido Dismutasa/metabolismo
15.
Adv Sci (Weinh) ; 8(19): e2101129, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34272934

RESUMEN

Motor imagery offers an excellent opportunity as a stimulus-free paradigm for brain-machine interfaces. Conventional electroencephalography (EEG) for motor imagery requires a hair cap with multiple wired electrodes and messy gels, causing motion artifacts. Here, a wireless scalp electronic system with virtual reality for real-time, continuous classification of motor imagery brain signals is introduced. This low-profile, portable system integrates imperceptible microneedle electrodes and soft wireless circuits. Virtual reality addresses subject variance in detectable EEG response to motor imagery by providing clear, consistent visuals and instant biofeedback. The wearable soft system offers advantageous contact surface area and reduced electrode impedance density, resulting in significantly enhanced EEG signals and classification accuracy. The combination with convolutional neural network-machine learning provides a real-time, continuous motor imagery-based brain-machine interface. With four human subjects, the scalp electronic system offers a high classification accuracy (93.22 ± 1.33% for four classes), allowing wireless, real-time control of a virtual reality game.


Asunto(s)
Interfaces Cerebro-Computador , Encéfalo/fisiología , Electroencefalografía/instrumentación , Electroencefalografía/métodos , Interfaz Usuario-Computador , Realidad Virtual , Electrodos , Humanos , Cuero Cabelludo
16.
J Biomed Mater Res A ; 109(5): 695-712, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32608188

RESUMEN

Regeneration of skeletal muscle after volumetric injury is thought to be impaired by a dysregulated immune microenvironment that hinders endogenous repair mechanisms. Such defects result in fatty infiltration, tissue scarring, chronic inflammation, and debilitating functional deficits. Here, we evaluated the key cellular processes driving dysregulation in the injury niche through localized modulation of sphingosine-1-phosphate (S1P) receptor signaling. We employ dimensionality reduction and pseudotime analysis on single cell cytometry data to reveal heterogeneous immune cell subsets infiltrating preclinical muscle defects due to S1P receptor inhibition. We show that global knockout of S1P receptor 3 (S1PR3) is marked by an increase of muscle stem cells within injured tissue, a reduction in classically activated relative to alternatively activated macrophages, and increased bridging of regenerating myofibers across the defect. We found that local S1PR3 antagonism via nanofiber delivery of VPC01091 replicated key features of pseudotime immune cell recruitment dynamics and enhanced regeneration characteristic of global S1PR3 knockout. Our results indicate that local S1P receptor modulation may provide an effective immunotherapy for promoting a proreparative environment leading to improved regeneration following muscle injury.


Asunto(s)
Ciclopentanos/uso terapéutico , Inmunoterapia/métodos , Músculo Esquelético/lesiones , Regeneración/efectos de los fármacos , Receptores de Esfingosina-1-Fosfato/fisiología , Animales , Ciclopentanos/farmacología , Liberación de Fármacos , Citometría de Flujo , Leucopenia/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía de Fuerza Atómica , Músculo Esquelético/inmunología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Células Mieloides/inmunología , Nanofibras , Tamaño de los Órganos , Músculo Cuádriceps/inmunología , Músculo Cuádriceps/lesiones , Músculo Cuádriceps/metabolismo , Músculo Cuádriceps/patología , Transducción de Señal/efectos de los fármacos , Receptores de Esfingosina-1-Fosfato/deficiencia , Receptores de Esfingosina-1-Fosfato/genética , Subgrupos de Linfocitos T/inmunología , Andamios del Tejido
17.
Front Bioeng Biotechnol ; 9: 650289, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33816455

RESUMEN

Volumetric muscle loss (VML) injuries after extremity trauma results in an important clinical challenge often associated with impaired healing, significant fibrosis, and long-term pain and functional deficits. While acute muscle injuries typically display a remarkable capacity for regeneration, critically sized VML defects present a dysregulated immune microenvironment which overwhelms innate repair mechanisms leading to chronic inflammation and pro-fibrotic signaling. In this series of studies, we developed an immunomodulatory biomaterial therapy to locally modulate the sphingosine-1-phosphate (S1P) signaling axis and resolve the persistent pro-inflammatory injury niche plaguing a critically sized VML defect. Multiparameter pseudo-temporal 2D projections of single cell cytometry data revealed subtle distinctions in the altered dynamics of specific immune subpopulations infiltrating the defect that were critical to muscle regeneration. We show that S1P receptor modulation via nanofiber delivery of Fingolimod (FTY720) was characterized by increased numbers of pro-regenerative immune subsets and coincided with an enriched pool of muscle stem cells (MuSCs) within the injured tissue. This FTY720-induced priming of the local injury milieu resulted in increased myofiber diameter and alignment across the defect space followed by enhanced revascularization and reinnervation of the injured muscle. These findings indicate that localized modulation of S1P receptor signaling via nanofiber scaffolds, which resemble the native extracellular matrix ablated upon injury, provides great potential as an immunotherapy for bolstering endogenous mechanisms of regeneration following VML injury.

18.
Elife ; 102021 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-34323217

RESUMEN

During aging and neuromuscular diseases, there is a progressive loss of skeletal muscle volume and function impacting mobility and quality of life. Muscle loss is often associated with denervation and a loss of resident muscle stem cells (satellite cells or MuSCs); however, the relationship between MuSCs and innervation has not been established. Herein, we administered severe neuromuscular trauma to a transgenic murine model that permits MuSC lineage tracing. We show that a subset of MuSCs specifically engraft in a position proximal to the neuromuscular junction (NMJ), the synapse between myofibers and motor neurons, in healthy young adult muscles. In aging and in a mouse model of neuromuscular degeneration (Cu/Zn superoxide dismutase knockout - Sod1-/-), this localized engraftment behavior was reduced. Genetic rescue of motor neurons in Sod1-/- mice reestablished integrity of the NMJ in a manner akin to young muscle and partially restored MuSC ability to engraft into positions proximal to the NMJ. Using single cell RNA-sequencing of MuSCs isolated from aged muscle, we demonstrate that a subset of MuSCs are molecularly distinguishable from MuSCs responding to myofiber injury and share similarity to synaptic myonuclei. Collectively, these data reveal unique features of MuSCs that respond to synaptic perturbations caused by aging and other stressors.


Asunto(s)
Envejecimiento , Músculo Esquelético/lesiones , Mioblastos Esqueléticos/fisiología , Unión Neuromuscular/fisiología , Superóxido Dismutasa-1/deficiencia , Animales , Femenino , Masculino , Ratones Noqueados
19.
Biosens Bioelectron ; 165: 112404, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32729524

RESUMEN

Operant conditioning of Hoffmann's reflex (H-reflex) is a non-invasive and targeted therapeutic intervention for patients with movement disorders following spinal cord injury. The reflex-conditioning protocol uses electromyography (EMG) to measure reflexes from specific muscles elicited using transcutaneous electrical stimulation. Despite recent advances in wearable electronics, existing EMG systems that measure muscle activity for operant conditioning of spinal reflexes still use rigid metal electrodes with conductive gels and aggressive adhesives, while requiring precise positioning to ensure reliability of data across experimental sessions. Here, we present the first large-area epidermal electronic system (L-EES) and demonstrate its use in every step of the reflex-conditioning protocol. The L-EES is a stretchable and breathable composite of nanomembrane electrodes (16 electrodes in a four by four array), elastomer, and fabric. The nanomembrane electrode array enables EMG recording from a large surface area on the skin and the breathable elastomer with fabric is biocompatible and comfortable for patients. We show that L-EES can record direct muscle responses (M-waves) and H-reflexes, both of which are comparable to those recorded using conventional EMG recording systems. In addition, L-EES may improve the reflex-conditioning protocol; it has potential to automatically optimize EMG electrode positioning, which may reduce setup time and error across experimental sessions.


Asunto(s)
Técnicas Biosensibles , Reflejo H , Condicionamiento Operante , Electrónica , Humanos , Reproducibilidad de los Resultados
20.
Nat Commun ; 11(1): 3450, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32651424

RESUMEN

Recent advances in nanomaterials and nano-microfabrication have enabled the development of flexible wearable electronics. However, existing manufacturing methods still rely on a multi-step, error-prone complex process that requires a costly cleanroom facility. Here, we report a new class of additive nanomanufacturing of functional materials that enables a wireless, multilayered, seamlessly interconnected, and flexible hybrid electronic system. All-printed electronics, incorporating machine learning, offers multi-class and versatile human-machine interfaces. One of the key technological advancements is the use of a functionalized conductive graphene with enhanced biocompatibility, anti-oxidation, and solderability, which allows a wireless flexible circuit. The high-aspect ratio graphene offers gel-free, high-fidelity recording of muscle activities. The performance of the printed electronics is demonstrated by using real-time control of external systems via electromyograms. Anatomical study with deep learning-embedded electrophysiology mapping allows for an optimal selection of three channels to capture all finger motions with an accuracy of about 99% for seven classes.


Asunto(s)
Técnicas Biosensibles/métodos , Electrónica/métodos , Grafito/química , Conductividad Eléctrica , Humanos , Nanoestructuras/química , Dispositivos Electrónicos Vestibles , Tecnología Inalámbrica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA