Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Exp Mol Pathol ; 101(1): 31-7, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27222019

RESUMEN

AIM: The aim of this study was to examine the role of IL-33/ST2 pathway in a pathogenesis of acute inflammation and its effects on tissue damage, antioxidative capacity, magnesium concentration and cytokine profile in acutely inflamed tissue. MATERIAL AND METHODS: Male mice were randomly divided in four groups: wild-type control group (WT-C), ST2 knockout control group (KO-C), wild-type inflammatory group (WT-I), and ST2 knockout inflammatory group (KO-I). Acute inflammation was induced in WT-I and KO-I by intramuscular injection of turpentine oil, while mice in WT-C and KO-C were treated with saline. After 12h, animals were euthanized, and blood was collected for determination of creatine kinase (CK) and aspartate transaminase (AST) activity. The treated tissue was used for histopathological analysis, determination of volume density of inflammatory infiltrate (Vdii) and necrotic fiber (Vdnf), gene expression of interleukin (IL)-33, ST2, tumor necrosis factor alpha (TNF-alpha), IL-6, IL-12p35, and transforming growth factor beta (TGF-beta), concentration of magnesium (Mg), copper (Cu), selenium (Se), manganese (Mn) and reduced glutathione (GSH), and superoxide dismutase (SOD) and glutathione peroxidase (GPx) activity. RESULTS: Presence of inflammatory infiltration and necrosis in the treated tissue was histopathologically confirmed in WT-I and KO-I. Vdii was significantly higher in WT-I when compared to KO-I, whereas Vdnf did not significantly differ between WT-I and KO-I. CK and AST significantly increased in both inflammatory groups when compared to corresponding control groups. However, the values of CK and AST were significantly higher in WT-I than in KO-I. Mg in the treated tissue was significantly lower in WT-I in comparison to WT-C and KO-I, while there was no significant difference between KO-C and KO-I. There was no significant difference in Cu, Se, and Mn in the treated tissue between WT-C, KO-C, WT-I and KO-I. Gene expression of IL-33 in the treated tissue increased in both inflammatory groups when compared to the corresponding control groups, but it was significantly higher in KO-I than in WT-I. Gene expression of ST2 in the treated tissue was significantly higher in WT-I than in WT-C. Gene expression of TNF-alpha, IL-6, and IL-12p35 in the treated tissue was significantly higher in WT-I and KO-I than in the corresponding control groups, and IL-6 was significantly higher in KO-C than in WT-C. TGF-beta gene expression in the treated tissue was significantly higher in KO-I when compared to WT-I, while there was no difference between WT-C and KO-C. SOD activity decreased at the site of acute inflammation in both inflammatory groups, while the GPx activity increased. GSH in the treated tissue was significantly higher in KO-I than in KO-C or WT-I. CONCLUSION: The results of our study have indicated, to our knowledge for the first time, that IL-33/ST2 pathway plays a role in enhancing inflammation and tissue damage at the site of acute inflammation by affecting the concentration of magnesium and GSH, important for antioxidative capacity, as well as gene expression of anti-inflammatory cytokine TGF-beta.


Asunto(s)
Antioxidantes/metabolismo , Inflamación/patología , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Interleucina-33/metabolismo , Magnesio/metabolismo , Músculos/patología , Animales , Aspartato Aminotransferasas/sangre , Cobre/metabolismo , Creatina Quinasa/metabolismo , Regulación de la Expresión Génica , Glutatión/metabolismo , Glutatión Peroxidasa/metabolismo , Inflamación/sangre , Inflamación/enzimología , Inflamación/genética , Proteína 1 Similar al Receptor de Interleucina-1/genética , Interleucina-33/genética , Masculino , Manganeso/metabolismo , Ratones Endogámicos BALB C , Músculos/efectos de los fármacos , Músculos/metabolismo , Selenio/metabolismo , Transducción de Señal , Superóxido Dismutasa/metabolismo , Factor de Crecimiento Transformador beta/farmacología
2.
J Neurochem ; 133(2): 223-32, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25348263

RESUMEN

We explored the interplay between the intracellular energy sensor AMP-activated protein kinase (AMPK), extracellular signal-regulated kinase (ERK), and autophagy in phorbol myristate acetate (PMA)-induced neuronal differentiation of SH-SY5Y human neuroblastoma cells. PMA-triggered expression of neuronal markers (dopamine transporter, microtubule-associated protein 2, ß-tubulin) was associated with an autophagic response, measured by the conversion of microtubule-associated protein light chain 3 (LC3)-I to autophagosome-bound LC3-II, increase in autophagic flux, and expression of autophagy-related (Atg) proteins Atg7 and beclin-1. This coincided with the transient activation of AMPK and sustained activation of ERK. Pharmacological inhibition or RNA interference-mediated silencing of AMPK suppressed PMA-induced expression of neuronal markers, as well as ERK activation and autophagy. A selective pharmacological blockade of ERK prevented PMA-induced neuronal differentiation and autophagy induction without affecting AMPK phosphorylation. Conversely, the inhibition of autophagy downstream of AMPK/ERK, either by pharmacological agents or LC3 knockdown, promoted the expression of neuronal markers, thus indicating a role of autophagy in the suppression of PMA-induced differentiation of SH-SY5Y cells. Therefore, PMA-induced neuronal differentiation of SH-SY5Y cells depends on a complex interplay between AMPK, ERK, and autophagy, in which the stimulatory effects of AMPK/ERK signaling are counteracted by the coinciding autophagic response. Phorbol myristate acetate (PMA) induces the expression of dopamine transporter, microtubule-associated protein 2, and ß-tubulin, and subsequent neuronal differentiation of SH-SY5Y neuroblastoma cells through AMP-activated protein kinase (AMPK)-dependent activation of extracellular signal-regulated kinase (ERK). The activation of AMPK/ERK axis also induces the expression of beclin-1 and Atg7, and increases LC3 conversion, thereby triggering the autophagic response that counteracts differentiation process.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Autofagia/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Acetato de Tetradecanoilforbol/farmacología , Proteína 7 Relacionada con la Autofagia , Homólogo de la Proteína 1 Relacionada con la Autofagia , Línea Celular Tumoral , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Neuroblastoma/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Interferencia de ARN/fisiología , Enzimas Activadoras de Ubiquitina/metabolismo
3.
Biomedicines ; 11(10)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37893026

RESUMEN

Glioblastoma multiforme (GBM) is the most lethal primary brain tumor in adults, characterized by a highly invasive nature and therapy resistance. Combination of menadione and ascorbic acid (AA+MD) exerts strong ROS-mediated anti-GBM activity in vitro. The objective of this study was to improve AA+MD anti-GBM potential by modulating the activity of Akt and c-Jun N-terminal kinase (JNK), molecules with an important role in GBM development. The effects of Akt and JNK modulation on AA+MD toxicity in U251 human glioblastoma cells were assessed by cell viability assays, flow cytometry, RNA interference and plasmid overexpression, and immunoblot analysis. The AA+MD induced severe oxidative stress, an early increase in Akt phosphorylation followed by its strong inhibition, persistent JNK activation, and U251 cell death. Small molecule Akt kinase inhibitor 10-DEBC enhanced, while pharmacological and genetic Akt activation decreased, AA+MD-induced toxicity. The U251 cell death potentiation by 10-DEBC correlated with an increase in the combination-induced autophagic flux and was abolished by genetic autophagy silencing. Additionally, pharmacological JNK inhibitor SP600125 augmented combination toxicity toward U251 cells, an effect linked with increased ROS accumulation. These results indicate that small Akt and JNK kinase inhibitors significantly enhance AA+MD anti-GBM effects by autophagy potentiation and amplifying deleterious ROS levels.

4.
Pharmaceutics ; 15(7)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37514033

RESUMEN

Graphene-based nanomaterials (GNMs), including graphene, graphene oxide, reduced graphene oxide, and graphene quantum dots, may have direct anticancer activity or be used as nanocarriers for antitumor drugs. GNMs usually enter tumor cells by endocytosis and can accumulate in lysosomes. This accumulation prevents drugs bound to GNMs from reaching their targets, suppressing their anticancer effects. A number of chemical modifications are made to GNMs to facilitate the separation of anticancer drugs from GNMs at low lysosomal pH and to enable the lysosomal escape of drugs. Lysosomal escape may be associated with oxidative stress, permeabilization of the unstable membrane of cancer cell lysosomes, release of lysosomal enzymes into the cytoplasm, and cell death. GNMs can prevent or stimulate tumor cell death by inducing protective autophagy or suppressing autolysosomal degradation, respectively. Furthermore, because GNMs prevent bound fluorescent agents from emitting light, their separation in lysosomes may enable tumor cell identification and therapy monitoring. In this review, we explain how the characteristics of the lysosomal microenvironment and the unique features of tumor cell lysosomes can be exploited for GNM-based cancer therapy.

5.
Brain Behav Immun ; 26(1): 150-8, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21925262

RESUMEN

We investigated the effects of centrally administered orexigenic hormone ghrelin on energy imbalance-induced inflammation. Rats were subjected for four weeks to three different dietary regimes: normal (standard food), high-fat (standard food with 30% lard) or food-restricted (70%, 50%, 40% and 40% of the expected food intake in 1st, 2nd, 3rd and 4th week, respectively). Compared to normal-weight controls, starved, but not obese rats had significantly higher levels of proinflammatory cytokines (TNF, IL-1ß, IFN-γ) in the blood. When compared to normally fed animals, the hearts of starved and obese animals expressed higher levels of mRNAs encoding proinflammatory mediators (TNF, IL-1ß, IL-6, IFN-γ, IL-17, IL-12, iNOS), while mRNA levels of the anti-inflammatory TGF-ß remained unchanged. Intracerebroventricular (ICV) injection of ghrelin (1 µg/day) for five consecutive days significantly reduced TNF, IL-1ß and IFN-γ levels in the blood of starved rats, as well as TNF, IL-17 and IL-12p40 mRNA expression in the hearts of obese rats. Conversely, ICV ghrelin increased the levels of IFN-γ, IL-17, IL-12p35 and IL-12p40 mRNA in the heart tissue of food-restricted animals. This was associated with an increase of immunosuppressive ACTH/corticosterone production in starved animals and a decrease of the immunostimulatory adipokine leptin both in food-restricted and high-fat groups. Ghrelin activated the energy sensor AMP-activated protein kinase (AMPK) in the hypothalamus and inhibited extracellular signal-regulated kinase (ERK) in the hearts of obese, but not starved rats. Therefore, central ghrelin may play a complex role in energy imbalance-induced inflammation by modulating HPA axis, leptin and AMPK/ERK signaling pathways.


Asunto(s)
Dieta , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/inmunología , Ghrelina/farmacología , Factores Inmunológicos , Adenilato Quinasa/metabolismo , Animales , Western Blotting , Peso Corporal/efectos de los fármacos , Restricción Calórica , Sistema Nervioso Central/patología , Citocinas/metabolismo , Grasas de la Dieta/farmacología , Ingestión de Alimentos/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Ghrelina/administración & dosificación , Hormonas/metabolismo , Inflamación/inducido químicamente , Inflamación/patología , Inyecciones Intraventriculares , Masculino , Miocardio/metabolismo , Obesidad/metabolismo , Obesidad/patología , Ratas , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa , Inanición/metabolismo , Inanición/patología
6.
Neuroendocrinology ; 96(1): 24-31, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22343549

RESUMEN

BACKGROUND/AIMS: The antihyperglycaemic drug metformin reduces food consumption through mechanisms that are not fully elucidated. The present study investigated the effects of intracerebroventricular administration of metformin on food intake and hypothalamic appetite-regulating signalling pathways induced by the orexigenic peptide ghrelin. METHODS: Rats were injected intracerebroventricularly with ghrelin (5 µg), metformin (50, 100 or 200 µg), 5-amino-imidazole-4-carboxamide 1-ß-D-ribofuranoside (AICAR, 25 µg) and L-leucine (1 µg) in different combinations. Food intake was monitored during the next 4 h. Hypothalamic activation of AMP-activated protein kinase (AMPK), acetyl-CoA carboxylase (ACC), regulatory-associated protein of mTOR (Raptor), mammalian target of rapamycin (mTOR) and p70 S6 kinase 1 (S6K) after 1 h of treatment was analysed by immunoblotting. RESULTS: Metformin suppressed the increase in food consumption induced by intracerebroventricular ghrelin in a dose-dependent manner. Ghrelin increased phosphorylation of hypothalamic AMPK and its targets ACC and Raptor, which was associated with the reduced phosphorylation of mTOR. The mTOR substrate, S6K, was activated by intracerebroventricular ghrelin despite the inhibition of mTOR. Metformin treatment blocked ghrelin-induced activation of hypothalamic AMPK/ACC/Raptor and restored mTOR activity without affecting S6K phosphorylation. Metformin also reduced food consumption induced by the AMPK activator AICAR while the ghrelin-triggered food intake was inhibited by the mTOR activator L-leucine. CONCLUSION: Metformin could reduce food intake by preventing ghrelin-induced AMPK signalling and mTOR inhibition in the hypotalamus.


Asunto(s)
Ingestión de Alimentos/efectos de los fármacos , Hipoglucemiantes/farmacología , Hipotálamo/efectos de los fármacos , Metformina/farmacología , Transducción de Señal/efectos de los fármacos , Acetil-CoA Carboxilasa/metabolismo , Adenilato Quinasa/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/metabolismo , Animales , Ghrelina/toxicidad , Hipotálamo/metabolismo , Masculino , Ratas , Ratas Wistar , Ribonucleótidos/metabolismo
7.
Pharmacol Res ; 65(1): 111-9, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21871960

RESUMEN

The role of autophagy, a process in which the cell self-digests its own components, was investigated in glioma cell death induced by the hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase-inhibiting drug simvastatin. Induction of autophagy and activation of autophagy-regulating signalling pathways were analyzed by immunoblotting. Flow cytometry/fluorescent microscopy was used to assess autophagy-associated intracellular acidification and apoptotic markers (phosphatidylserine exposure, DNA fragmentation and caspase activation). Cell viability was determined by crystal violet, MTT or LDH release assay. Simvastatin treatment of U251 and C6 glioma cell lines caused the appearance of autophagolysosome-like intracytoplasmic acidic vesicles. The induction of autophagy in U251 cells was confirmed by the upregulation of autophagosome-associated LC3-II and pro-autophagic beclin-1, as well as by the downregulation of the selective autophagic target p62. Simvastatin induced the activation of AMP-activated protein kinase (AMPK) and its target Raptor, while simultaneously downregulating activation of Akt. Mammalian target of rapamycin (mTOR), a major AMPK/Akt downstream target and a major negative autophagy regulator, and its substrate p70 S6 kinase 1 were also inhibited by simvastatin. Mevalonate, the product of HMG-CoA reductase enzymatic activity, AMPK siRNA or pharmacological inactivation of AMPK with compound C suppressed, while the inhibitors of Akt (10-DEBC hydrochloride) and mTOR (rapamycin) mimicked autophagy induction by simvastatin. Inhibition of autophagy with bafilomycin A1, 3-methyladenine and LC3ß shRNA, as well as AMPK inhibition with compound C or AMPK siRNA, markedly increased apoptotic death of simvastatin-treated U251 cells. These data suggest that inhibition of AMPK-dependent autophagic response might sensitize glioma cells to statin-induced apoptotic death.


Asunto(s)
Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Autofagia/efectos de los fármacos , Neoplasias Encefálicas/enzimología , Glioma/enzimología , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/metabolismo , Beclina-1 , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Glioma/genética , Glioma/patología , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Proteínas de la Membrana/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Interferencia de ARN , Ratas , Transducción de Señal/efectos de los fármacos , Simvastatina/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Transfección
8.
Pharm Res ; 29(8): 2249-63, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22538436

RESUMEN

PURPOSE: To investigate the ability of chloroquine, a lysosomotropic autophagy inhibitor, to enhance the anticancer effect of nutrient deprivation. METHODS: Serum-deprived U251 glioma, B16 melanoma and L929 fibrosarcoma cells were treated with chloroquine in vitro. Cell viability was measured by crystal violet and MTT assay. Oxidative stress, apoptosis/necrosis and intracellular acidification were analyzed by flow cytometry. Cell morphology was examined by light and electron microscopy. Activation of AMP-activated protein kinase (AMPK) and autophagy were monitored by immunoblotting. RNA interference was used for AMPK and LC3b knockdown. The anticancer efficiency of intraperitoneal chloroquine in calorie-restricted mice was assessed using a B16 mouse melanoma model. RESULTS: Chloroquine rapidly killed serum-starved cancer cells in vitro. This effect was not mimicked by autophagy inhibitors or LC3b shRNA, indicating autophagy-independent mechanism. Chloroquine-induced lysosomal accumulation and oxidative stress, leading to mitochondrial depolarization, caspase activation and mixed apoptotic/necrotic cell death, were prevented by lysosomal acidification inhibitor bafilomycin. AMPK downregulation participated in chloroquine action, as AMPK activation reduced, and AMPK shRNA mimicked chloroquine toxicity. Chloroquine inhibited melanoma growth in calorie-restricted mice, causing lysosomal accumulation, mitochondrial disintegration and selective necrosis of tumor cells. CONCLUSION: Combined treatment with chloroquine and calorie restriction might be useful in cancer therapy.


Asunto(s)
Antimaláricos/uso terapéutico , Restricción Calórica , Cloroquina/uso terapéutico , Lisosomas/efectos de los fármacos , Neoplasias/dietoterapia , Neoplasias/tratamiento farmacológico , Animales , Antimaláricos/farmacología , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cloroquina/farmacología , Femenino , Humanos , Lisosomas/metabolismo , Lisosomas/patología , Melanoma/dietoterapia , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Melanoma/patología , Ratones , Ratones Endogámicos C57BL , Neoplasias/metabolismo , Neoplasias/patología , Estrés Oxidativo/efectos de los fármacos
9.
Am J Cancer Res ; 11(11): 5625-5643, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34873484

RESUMEN

Metformin has been known to treat type 2 diabetes for decades and is widely prescribed antidiabetic drug. Recently, its anticancer potential has also been discovered. Moreover, metformin has low cost thus it has attained profound research interest. Comprehensing the complexity of the molecular regulatory networks in cancer provides a mode for advancement of research in cancer development and treatment. Metformin targets many pathways that play an important role in cancer cell survival outcome. Here, we described anticancer activity of metformin on the AMPK dependent/independent mechanisms regulating metabolism, oncogene/tumor suppressor signaling pathways together with the issue of clinical studies. We also provided brief overwiev about recently described metformin's role in cancer immunity. Insight in these complex molecular networks, will simplify application of metformin in clinical trials and contribute to improvement of anti-cancer therapy.

10.
BMC Cancer ; 10: 638, 2010 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-21092265

RESUMEN

BACKGROUND: Glucocorticoids (GCs) cause apoptosis and cell cycle arrest in lymphoid cells and constitute a central component in the therapy of lymphoid malignancies, most notably childhood acute lymphoblastic leukemia (ALL). PFKFB2 (6-phosphofructo-2-kinase/fructose-2,6-biphosphatase-2), a kinase controlling glucose metabolism, was identified by us previously as a GC response gene in expression profiling analyses performed in children with ALL during initial systemic GC mono-therapy. Since deregulation of glucose metabolism has been implicated in apoptosis induction, this gene and its relatives, PFKFB1, 3, and 4, were further analyzed. METHODS: Gene expression analyses of isolated lymphoblasts were performed on Affymetrix HGU133 Plus 2.0 microarrays. GCRMA normalized microarray data were analyzed using R-Bioconductor packages version 2.5. Functional gene analyses of PFKFB2-15A and -15B isoforms were performed by conditional gene over-expression experiments in the GC-sensitive T-ALL model CCRF-CEM. RESULTS: Expression analyses in additional ALL children, non-leukemic individuals and leukemic cell lines confirmed frequent PFKFB2 induction by GC in most systems sensitive to GC-induced apoptosis, particularly T-ALL cells. The 3 other family members, in contrast, were either absent or only weakly expressed (PFKFB1 and 4) or not induced by GC (PFKFB3). Conditional PFKFB2 over-expression in the CCRF-CEM T-ALL in vitro model revealed that its 2 splice variants (PFKFB2-15A and PFKFB2-15B) had no detectable effect on cell survival. Moreover, neither PFKFB2 splice variant significantly affected sensitivity to, or kinetics of, GC-induced apoptosis. CONCLUSIONS: Our data suggest that, at least in the model system investigated, PFKFB2 is not an essential upstream regulator of the anti-leukemic effects of GC.


Asunto(s)
Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Dexametasona/uso terapéutico , Glucocorticoides/uso terapéutico , Linfocitos/efectos de los fármacos , Fosfofructoquinasa-2/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Animales , Apoptosis/genética , Supervivencia Celular , Niño , Doxiciclina/farmacología , Femenino , Perfilación de la Expresión Génica/métodos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Humanos , Células Jurkat , Linfocitos/enzimología , Linfocitos/patología , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosfofructoquinasa-2/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/enzimología , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Ratas , Factores de Tiempo , Transfección
11.
Nanotechnology ; 21(37): 375102, 2010 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-20724776

RESUMEN

The present study investigated the hemolytic properties of fullerene (C(60)) nanoparticles prepared by solvent exchange using tetrahydrofuran (nC(60)THF), or by mechanochemically assisted complexation with macrocyclic oligosaccharide gamma-cyclodextrin (nC(60)CDX) or the copolymer ethylene vinyl acetate-ethylene vinyl versatate (nC(60)EVA-EVV). The spectrophotometrical analysis of hemoglobin release revealed that only nC(60)THF, but not nC(60)CDX or nC(60)EVA-EVV, was able to cause lysis of human erythrocytes in a dose- and time-dependent manner. Atomic force microscopy revealed that nC(60)THF-mediated hemolysis was preceded by erythrocyte shrinkage and increase in cell surface roughness. A flow cytometric analysis confirmed a decrease in erythrocyte size and demonstrated a significant increase in reactive oxygen species production in red blood cells exposed to nC(60)THF. The nC(60)THF-triggered hemolytic activity was efficiently reduced by the antioxidants N-acetylcysteine and butylated hydroxyanisole, as well as by serum albumin, the most abundant protein in human blood plasma. These data indicate that nC(60)THF can cause serum albumin-preventable hemolysis through oxidative stress-mediated damage of the erythrocyte membrane.


Asunto(s)
Fulerenos/efectos adversos , Hemólisis , Nanopartículas/efectos adversos , Estrés Oxidativo , Eritrocitos/citología , Fulerenos/química , Furanos/efectos adversos , Furanos/química , Humanos , Nanopartículas/química , Polivinilos/efectos adversos , Polivinilos/química , Albúmina Sérica/metabolismo , gamma-Ciclodextrinas/efectos adversos , gamma-Ciclodextrinas/química
12.
Lasers Surg Med ; 42(4): 338-47, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20432283

RESUMEN

BACKGROUND AND OBJECTIVE: Laser phototherapy could be potentially used for cancer treatment, but the mechanisms of laser-induced cell death are not completely understood. Autophagy is the process in which the damaged cellular proteins and organelles are engulfed by and destroyed in acidified multiple-membrane vesicles. The aim of the present study was to investigate the role of autophagy in laser-induced tumor cell death in vitro. STUDY DESIGN/MATERIALS AND METHODS: The monolayers of U251 human glioma tumor cells were exposed to 532 nm laser light from a single mode frequency-doubled Nd-YVO4 laser. A flattened Gaussian radial profile of laser beam (0.5-4 W) was used to uniformly illuminate entire colony of cells for various amounts of time (15-120 seconds) in the absence of cell culture medium. The cells were grown for 24 hours and the cell viability was determined by crystal violet or MTT assay. The presence of autophagy was assessed after 16 hours by fluorescence microscopy/flow cytometric analysis of acridine orange-stained autophagolysosomes and Western blot analysis of the autophagosome-associated LC3-II protein. The concentration of the principal pro-autophagic protein beclin-1 was determined after 6 hours by cell-based ELISA. RESULTS: The intracytoplasmic accumulation of autophagic vesicles, increase in LC3-II and up-regulation of beclin-1 expression were clearly observed under irradiation conditions that caused approximately 50% cytotoxicity. Post-irradiation addition of three different autophagy inhibitors (bafilomycin A1, chloroquine, or wortmannin) further increased the laser-induced cytotoxicity, without affecting non-irradiated cells. CONCLUSIONS: These data indicate that beclin-1-dependent induction of autophagy can protect glioma cells from laser-mediated cytotoxicity.


Asunto(s)
Autofagia , Glioma/patología , Terapia por Láser/métodos , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Beclina-1 , Western Blotting , Proliferación Celular , Supervivencia Celular , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Humanos , Hipertermia Inducida , Técnicas In Vitro , Terapia por Láser/instrumentación , Láseres de Estado Sólido , Microscopía Fluorescente , Necrosis , Células Tumorales Cultivadas , Regulación hacia Arriba
13.
Eur J Pharmacol ; 859: 172540, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31310755

RESUMEN

We performed a comparative analysis of molecular cytotoxic mechanisms of lysosomal autophagy inhibitors bafilomycin A1, chloroquine, and ammonium chloride in B16 mouse melanoma cells. All agents caused oxidative stress, mitochondrial depolarization, and caspase-dependent apoptotic death, which was not affected by genetic inactivation of autophagy. Cathepsin inhibition reduced only the cytotoxicity of chloroquine, indicating its ability to cause lysosomal membrane permeabilization. Bafilomycin reduced the mRNA levels of anti-apoptotic Bcl-2, while chloroquine and ammonium chloride increased the mRNA expression of pro-apoptotic Pten and Puma, as well as anti-apoptotic Bcl-xL. Ammonium chloride additionally increased the mRNA expression of pro-apoptotic Bim and p53. All three agents decreased the activity of mechanistic target of rapamycin (mTOR) and increased the activation of p38 mitogen-activated protein kinase (MAPK). Chloroquine and ammonium chloride additionally stimulated the phosphorylation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), respectively, while only bafilomycin increased the phosphorylation of the energy sensor AMP-activated protein kinase (AMPK). mTOR activator leucine did not affect the cytotoxicity of lysosomal inhibitors. p38 MAPK inhibitor SB203580 reduced the cytotoxicity of bafilomycin but increased that of chloroquine and ammonium chloride. The pharmacological inhibition of ERK1/2, JNK, and AMPK potentiated the cytotoxicity of chloroquine, ammonium chloride, and bafilomycin, respectively. The observed mechanistic differences were associated with antagonistic interactions of lysosomal inhibitors in B16 cell killing. In conclusion, all investigated lysosomal inhibitors cause autophagy-independent mitochondrial dysfunction and apoptotic death, but differ in the ability to affect lysosomal permeabilization, balance between pro- and anti-apoptotic molecules of Bcl-2 family, and MAPK/AMPK signaling.


Asunto(s)
Antineoplásicos/farmacología , Autofagia/efectos de los fármacos , Lisosomas/efectos de los fármacos , Lisosomas/patología , Melanoma Experimental/patología , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Estrés Oxidativo/efectos de los fármacos
14.
Eur J Pharmacol ; 583(1): 1-10, 2008 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-18262519

RESUMEN

To explore combined antiglioma effect of nitric oxide (NO) and hyperthermia, the rat C6 and human U251 glioma cells were exposed to NO-releasing agents sodium nitroprusside(SNP), S-nitrosoglutathione or PAPA-NONOate, followed by hyperthermia (1 h, 43 degrees C). While each treatment alone showed only moderate efficiency, a synergistic cytotoxicity of NO donors and hyperthermia was clearly demonstrated by crystal violet and MTT cytotoxicity assays. The flow cytometric analysis with the appropriate reporter fluorochromes confirmed that hyperthermia and SNP cooperated in inducing oxidative stress, mitochondrial depolarization, caspase activation and DNA fragmentation, leading to both necrotic and caspase-dependent apoptotic cell death. The acridine orange staining of intracellular acidic compartments revealed that SNP completely blocked hyperthermia-induced autophagy, while the inhibition of autophagy by 3-methyl adenine mimicked SNP-triggered oxidative stress, caspase activation and cell death in hyperthermia-exposed cells. Therefore, the synergistic cytotoxicity of SNP and hyperthermia could result from NO-mediated suppression of protective autophagic response in glioma cells.


Asunto(s)
Neoplasias Encefálicas/terapia , Glioma/terapia , Hipertermia Inducida , Óxido Nítrico/uso terapéutico , Vasodilatadores/uso terapéutico , Animales , Autofagia/efectos de los fármacos , Autofagia/fisiología , Caspasas/metabolismo , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Terapia Combinada , Fragmentación del ADN/efectos de los fármacos , Activación Enzimática , Citometría de Flujo , Humanos , Hidrazinas/uso terapéutico , Mitocondrias/efectos de los fármacos , Mitocondrias/fisiología , Donantes de Óxido Nítrico/uso terapéutico , Nitritos/metabolismo , Nitroprusiato/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Ratas , S-Nitrosoglutatión/uso terapéutico
15.
J Neuroimmunol ; 319: 100-105, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29548704

RESUMEN

Autophagy, a process of controlled self-digestion which regulates cell homeostasis, is involved in innate and adaptive immunity. We investigated the expression of autophagy genes and autophagic activity in distinct lymphocyte populations in treatment-naive MS patients. The mRNA and protein levels of autophagy-related (ATG)5, required for autophagosome formation, were increased in CD4+ and CD4- T cells, but not B cells of MS patients compared to control subjects. The expression of other investigated autophagy genes, as well as the autophagic activity, did not significantly differ between the two groups. ATG5 mRNA levels in CD4+ T cells from MS patients were positively correlated with those of the proinflammatory cytokine tumor necrosis factor. These data suggest that autophagy-independent increase in ATG5 expression might be associated with the proinflammatory capacity of T cells in multiple sclerosis.


Asunto(s)
Proteína 5 Relacionada con la Autofagia/biosíntesis , Autofagia/fisiología , Linfocitos T CD4-Positivos/inmunología , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/patología , Adulto , Anciano , Linfocitos T CD4-Positivos/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/metabolismo , Adulto Joven
16.
Biomaterials ; 28(36): 5437-48, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17884160

RESUMEN

Because of the ability to induce cell death in certain conditions, the fullerenes (C(60)) are potential anticancer and toxic agents. The colloidal suspension of crystalline C(60) (nano-C(60), nC(60)) is extremely toxic, but the mechanisms of its cytotoxicity are not completely understood. By combining experimental analysis and mathematical modelling, we investigate the requirements for the reactive oxygen species (ROS)-mediated cytotoxicity of different nC(60) suspensions, prepared by solvent exchange method in tetrahydrofuran (THF/nC(60)) and ethanol (EtOH/nC(60)), or by extended mixing in water (aqu/nC(60)). With regard to their capacity to generate ROS and cause mitochondrial depolarization followed by necrotic cell death, the nC(60) suspensions are ranked in the following order: THF/nC(60)>EtOH/nC(60)>aqu/nC(60). Mathematical modelling of singlet oxygen ((1)O(2)) generation indicates that the (1)O(2)-quenching power (THF/nC(60)

Asunto(s)
Fulerenos/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Coloides , Humanos , Ratones , Solventes
17.
Mol Cell Endocrinol ; 440: 116-124, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27845161

RESUMEN

Autophagy, a process of controlled cellular self-digestion, could be involved in cyclic remodeling of the human endometrium. We investigated endometrial mRNA expression of 23 autophagy-related (ATG) genes and transcription factors in healthy controls (n = 12) and anovulatory polycystic ovary syndrome (PCOS) patients (n = 24), as well as in their subgroup (n = 12) before and after metformin treatment. The mRNA levels of transcription factor forkhead box protein O1 (FOXO1) and several molecules involved in autophagosome formation (ATG13, RB1-inducible coiled-coil 1), autophagosome nucleation (ATG14, beclin 1, SH3-domain GRB2-like endophilin B1), autophagosome elongation (ATG3, ATG5, γ-aminobutyric acid receptor-associated protein - GABARAP), and delivery of ubiquitinated proteins to autophagosomes (sequestosome 1), were significantly reduced in anovulatory PCOS compared to healthy endometrium. Free androgen index, but not free estrogen index, insulin levels, or body mass index, negatively correlated with the endometrial expression of ATG3, ATG14, and GABARAP in PCOS patients. Treatment of PCOS patients with metformin (2 g/day for 3 months) significantly increased the endometrial mRNA levels of FOXO1, ATG3, and UV radiation resistance-associated gene. These data suggest that increased androgen availability in PCOS is associated with metformin-sensitive transcriptional downregulation of endometrial autophagy.


Asunto(s)
Autofagia/genética , Regulación hacia Abajo/genética , Endometrio/metabolismo , Síndrome del Ovario Poliquístico/genética , Adulto , Autofagia/efectos de los fármacos , Estudios de Casos y Controles , Regulación hacia Abajo/efectos de los fármacos , Endometrio/efectos de los fármacos , Endometrio/patología , Femenino , Perfilación de la Expresión Génica , Humanos , Metformina/farmacología , Metformina/uso terapéutico , Síndrome del Ovario Poliquístico/tratamiento farmacológico
18.
Biomaterials ; 146: 13-28, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28892752

RESUMEN

Graphene quantum dots (GQD) are atom-thick nanodimensional carbon sheets with excellent physico-chemical and biological properties, making them attractive for application in theranostics. However, their immunoregulatory properties are insufficiently investigated, especially in human primary immune cells. We found that non-toxic doses of GQD inhibit the production of proinflammatory and T helper (Th)1 cytokines, and augment the production of anti-inflammatory and Th2 cytokines by human peripheral blood mononuclear cells. While unable to affect T cells directly, GQD impaired the differentiation and functions of monocyte-derived dendritic cells (DC), lowering their capacity to stimulate T cell proliferation, development of Th1 and Th17 cells, and T-cell mediated cytotoxicity. Additionally, GQD-treated DC potentiated Th2 polarization, and induced suppressive CD4+CD25highFoxp3+ regulatory T cells. After internalization in a dynamin-independent, cholesterol-dependent manner, GQD lowered the production of reactive oxygen species and nuclear translocation of NF-κB in DC. The activity of mammalian target of rapamycin (mTOR) was reduced by GQD, which correlated with the increase in transcription of autophagy genes and autophagic flux in DC. Genetic suppression of autophagy impaired the pro-tolerogenic effects of GQD on DC. Our results suggest that GQD-triggered autophagy promotes tolerogenic functions in monocyte-derived DC, which could be beneficial in inflammatory T-cell mediated pathologies, but also harmful in GQD-based anti-cancer therapy.


Asunto(s)
Células Dendríticas/citología , Células Dendríticas/efectos de los fármacos , Grafito/química , Grafito/farmacología , Puntos Cuánticos/química , Autofagia/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Citocinas/metabolismo , Citometría de Flujo , Humanos , Immunoblotting , Reacción en Cadena en Tiempo Real de la Polimerasa , Linfocitos T Reguladores/efectos de los fármacos
19.
Bone ; 52(1): 524-31, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23111315

RESUMEN

We investigated the role of AMP-activated protein kinase (AMPK), Akt, mammalian target of rapamycin (mTOR), autophagy and their interplay in osteogenic differentiation of human dental pulp mesenchymal stem cells. The activation of various members of AMPK, Akt and mTOR signaling pathways and autophagy was analyzed by immunoblotting, while osteogenic differentiation was assessed by alkaline phosphatase staining and real-time RT-PCR/immunoblot quantification of osteocalcin, Runt-related transcription factor 2 and bone morphogenetic protein 2 mRNA and/or protein levels. Osteogenic differentiation of mesenchymal stem cells was associated with early (day 1) activation of AMPK and its target Raptor, coinciding with the inhibition of mTOR and its substrate p70S6 kinase. The early induction of autophagy was demonstrated by accumulation of autophagosome-bound LC3-II, upregulation of proautophagic beclin-1 and a decrease in the selective autophagic target p62. This was followed by the late activation of Akt/mTOR at days 3-7 of differentiation. The RNA interference-mediated silencing of AMPK, mTOR or autophagy-essential LC3ß, as well as the pharmacological inhibitors of AMPK (compound C), Akt (10-DEBC hydrochloride), mTOR (rapamycin) and autophagy (bafilomycin A1, chloroquine and ammonium chloride), each suppressed mesenchymal stem cell differentiation to osteoblasts. AMPK knockdown prevented early mTOR inhibition and autophagy induction, as well as late activation of Akt/mTOR signaling, while Akt inhibition suppressed mTOR activation without affecting AMPK phosphorylation. Our data indicate that AMPK controls osteogenic differentiation of human mesenchymal stem cells through both early mTOR inhibition-mediated autophagy and late activation of Akt/mTOR signaling axis.


Asunto(s)
Adenilato Quinasa/metabolismo , Autofagia , Diferenciación Celular/fisiología , Osteogénesis , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Femenino , Humanos , Células Madre/metabolismo
20.
Immunobiology ; 218(8): 1113-8, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23623393

RESUMEN

We explored the effect of therapeutic glucoregulation on the blood levels of proinflammatory T helper (Th)17 cytokines interleukin (IL)-17 and IL-23, and Th1 cytokines interferon (IFN)-γ and IL-12 in newly diagnosed type 2 diabetes patients. The investigated group consisted of 23 subjects (17 men and 6 women, age 26-64). The cytokine serum levels, glycated hemoglobin (HbA1c) as a marker of glucoregulation, homeostasis model assessment index as a measure of insulin resistance (HOMA-IR), and body mass index (BMI) were determined before and after 12 weeks of therapy consisting of standard lifestyle modification and metformin (1000 mg b.i.d.). The levels of Th17 and Th1 cytokines before treatment did not correlate with age, BMI or HOMA-IR. The patients with poor glucoregulation (HbA1c>7%, n=12), compared to those with good glucoregulation (HbA1c≤7%, n=11), had higher serum levels of Th17 and Th1 cytokines, but only the differences in IL-17 (median 21.2 pg/ml vs. 4.8 pg/ml) and IFN-γ 5 (0.6 pg/ml vs. 27.7 pg/ml) reached statistical significance (p=0.003 and p=0.012, respectively). The reduction of HbA1c values (from 8.6 to 5.9%, p=0.000) observed upon treatment in patients with poor glucoregulation was associated with a significant decrease in the concentration of IL-17 (from 21.2 to 12.9 pg/ml, p=0.020), but not IFN-γ (50.6 vs. 52.3, p=0.349). These data indicate that therapeutic improvement of glucoregulation might contribute to a reduction of IL-17 levels in newly diagnosed type 2 diabetes patients.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Glucosa/metabolismo , Interleucina-17/sangre , Células TH1/inmunología , Células Th17/inmunología , Adulto , Índice de Masa Corporal , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/inmunología , Femenino , Hemoglobina Glucada/metabolismo , Humanos , Hipoglucemiantes/uso terapéutico , Resistencia a la Insulina , Interferón gamma/sangre , Interleucina-12/sangre , Interleucina-23/sangre , Masculino , Metformina/uso terapéutico , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA