Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Metab ; 73: 101734, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37127108

RESUMEN

BACKGROUND: Advanced Glycation End products (AGEs) are a heterogeneous group of stable reaction products formed when amino acids, peptides, or proteins are glycated by the non-enzymatic Maillard Reaction. The formation and accumulation of these products in vivo are linked to many inflammation-based pathological outcomes and part of the pathophysiology of non-communicable diseases like eye cataracts and Alzheimer's disease. Since our diet contains high levels of the same compounds, it has been questioned whether their consumption is also detrimental to health. However, this is still under debate. In this context, the intestinal epithelium is an important target tissue since it is chronically exposed to relatively high concentrations of dietary AGEs. SCOPE OF REVIEW: This review summarizes the current evidence on the impact of dietary AGEs on the intestinal epithelium and critically reflects on its methodology. MAJOR CONCLUSIONS: In healthy rodent models, an inflammation-independent impaired intestinal barrier function is claimed; however, dietary AGEs showed anti-inflammatory activity in IBD models. In vitro studies could be a valuable tool to unravel the underlying mechanisms of these effects, however the available studies face some limitations, e.g. lack of the physicochemical characterization of the glycated proteins, the inclusion of the proper controls and the dose-dependency of the effect. In addition, studies using more advanced in vitro models like intestinal organoids and co-cultures with immune cells exposed to gut microbial metabolites derived from the fermentation of AGEs are still needed.


Asunto(s)
Productos Dietéticos Finales de Glicación Avanzada , Productos Finales de Glicación Avanzada , Humanos , Productos Finales de Glicación Avanzada/metabolismo , Reacción de Maillard , Inflamación , Mucosa Intestinal/metabolismo
2.
J Cachexia Sarcopenia Muscle ; 13(6): 3014-3027, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36303458

RESUMEN

BACKGROUND: Cachexia-anorexia syndrome is a complex metabolic condition characterized by skeletal muscle wasting, reduced food intake and prominent involvement of systemic and central inflammation. Here, the gut barrier function was investigated in pancreatic cancer-induced cachexia mouse models by relating intestinal permeability to the degree of cachexia. We further investigated the involvement of the gut-brain axis and the crosstalk between tumour, gut and hypothalamus in vitro. METHODS: Two distinct mouse models of pancreatic cancer cachexia (KPC and 4662) were used. Intestinal inflammation and permeability were assessed through fluorescein isothiocyanate dextran (FITC-dextran) and lipopolysaccharide (LPS), and hypothalamic and systemic inflammation through mRNA expression and plasma cytokines, respectively. To simulate the tumour-gut-brain crosstalk, hypothalamic (HypoE-N46) cells were incubated with cachexia-inducing tumour secretomes and LPS. A synthetic mimic of C26 secretome was produced based on its secreted inflammatory mediators. Each component of the mimic was systematically omitted to narrow down the key mediator(s) with an amplifying inflammation. To substantiate its contribution, cyclooxygenase-2 (COX-2) inhibitor was used. RESULTS: In vivo experiments showed FITC-dextran was enhanced in the KPC group (362.3 vs. sham 111.4 ng/mL, P < 0.001). LPS was increased to 140.9 ng/mL in the KPC group, compared with sham and 4662 groups (115.8 and 115.8 ng/mL, P < 0.05). Hypothalamic inflammatory gene expression of Ccl2 was up-regulated in the KPC group (6.3 vs. sham 1, P < 0.0001, 4662 1.3, P < 0.001), which significantly correlated with LPS concentration (r = 0.4948, P = 0.0226). These data suggest that intestinal permeability is positively related to the cachexic degree. Prostaglandin E2 (PGE2) was confirmed to be present in the plasma and PGE2 concentration (log10) in the KPC group was much higher than in 4662 group (1.85 and 0.56 ng/mL, P < 0.001), indicating a role for PGE2 in pancreatic cancer-induced cachexia. Parallel to in vivo findings, in vitro experiments revealed that the cachexia-inducing tumour secretomes (C26, LLC, KPC and 4662) amplified LPS-induced hypothalamic IL-6 secretion (419%, 321%, 294%, 160%). COX-2 inhibitor to the tumour cells reduced PGE2 content (from 105 to 102  pg/mL) in the secretomes and eliminated the amplified hypothalamic IL-6 production. Moreover, results could be reproduced by addition of PGE2 alone, indicating that the increased hypothalamic inflammation is directly related to the PGE2 from tumour. CONCLUSIONS: PGE2 secreted by the tumour may play a role in amplifying the effects of bacteria-derived LPS on the inflammatory hypothalamic response. The cachexia-inducing potential of tumour mice models parallels the loss of intestinal barrier function. Tumour-derived PGE2 might play a key role in cancer-related cachexia-anorexia syndrome via tumour-gut-brain crosstalk.


Asunto(s)
Dinoprostona , Neoplasias Pancreáticas , Animales , Ratones , Anorexia , Antiinflamatorios no Esteroideos , Caquexia/patología , Inhibidores de la Ciclooxigenasa , Modelos Animales de Enfermedad , Inflamación/metabolismo , Interleucina-6 , Lipopolisacáridos , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas
3.
Nutrients ; 13(4)2021 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-33805286

RESUMEN

Muscle wasting is a frequently observed, inflammation-driven condition in aging and disease, known as sarcopenia and cachexia. Current treatment strategies target the muscle directly and are often not able to reverse the process. Because a reduced gut function is related to systemic inflammation, this might be an indirect target to ameliorate muscle wasting, by administering pro-, pre-, and synbiotics. Therefore, this review aimed to study the potential of pro-, pre-, and synbiotics to treat muscle wasting and to elucidate which metabolites and mechanisms affect the organ crosstalk in cachexia. Overall, the literature shows that Lactobacillus species pluralis (spp.) and possibly other genera, such as Bifidobacterium, can ameliorate muscle wasting in mouse models. The beneficial effects of Lactobacillus spp. supplementation may be attributed to its potential to improve microbiome balance and to its reported capacity to reduce gut permeability. A subsequent literature search revealed that the reduction of a high gut permeability coincided with improved muscle mass or strength, which shows an association between gut permeability and muscle mass. A possible working mechanism is proposed, involving lactate, butyrate, and reduced inflammation in gut-brain-muscle crosstalk. Thus, reducing gut permeability via Lactobacillus spp. supplementation could be a potential treatment strategy for muscle wasting.


Asunto(s)
Tracto Gastrointestinal/efectos de los fármacos , Prebióticos , Probióticos , Sarcopenia/prevención & control , Simbióticos , Humanos , Permeabilidad/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA