Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(25): e2026733119, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35709320

RESUMEN

Safeguarding Earth's tree diversity is a conservation priority due to the importance of trees for biodiversity and ecosystem functions and services such as carbon sequestration. Here, we improve the foundation for effective conservation of global tree diversity by analyzing a recently developed database of tree species covering 46,752 species. We quantify range protection and anthropogenic pressures for each species and develop conservation priorities across taxonomic, phylogenetic, and functional diversity dimensions. We also assess the effectiveness of several influential proposed conservation prioritization frameworks to protect the top 17% and top 50% of tree priority areas. We find that an average of 50.2% of a tree species' range occurs in 110-km grid cells without any protected areas (PAs), with 6,377 small-range tree species fully unprotected, and that 83% of tree species experience nonnegligible human pressure across their range on average. Protecting high-priority areas for the top 17% and 50% priority thresholds would increase the average protected proportion of each tree species' range to 65.5% and 82.6%, respectively, leaving many fewer species (2,151 and 2,010) completely unprotected. The priority areas identified for trees match well to the Global 200 Ecoregions framework, revealing that priority areas for trees would in large part also optimize protection for terrestrial biodiversity overall. Based on range estimates for >46,000 tree species, our findings show that a large proportion of tree species receive limited protection by current PAs and are under substantial human pressure. Improved protection of biodiversity overall would also strongly benefit global tree diversity.


Asunto(s)
Efectos Antropogénicos , Biodiversidad , Conservación de los Recursos Naturales , Ecosistema , Árboles , Conservación de los Recursos Naturales/métodos , Humanos , Filogenia , Árboles/clasificación
2.
New Phytol ; 242(2): 493-506, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38404029

RESUMEN

Fluid transport across intervessel pit membranes of angiosperm xylem plays a major role in plant transpiration, with transport resistance largely depending on pore constriction sizes. Traditionally, fluid particles traversing pit membranes are assumed to cross a single instead of multiple pore constrictions. We tested a multi-layered pit membrane model in xylem of eight angiosperm species by estimating the size frequency of pore constrictions in relation to pit membrane thickness and compared modelled data with perfusion characteristics of nanoscale gold particles based on transmission electron microscopy. The size frequency of modelled pore constrictions showed similar patterns to the measured number of perfused particle sizes inside pit membranes, although frequency values measured were 10-50 times below modelled data. Small particles enter pit membranes most easily, especially when injected in thin pit membranes. The trapping of gold particles by pore constrictions becomes more likely with increasing pore constriction number and pit membrane thickness. While quantitative differences between modelled and experimental data are due to various practical limitations, their qualitative agreement supports a multi-layered pit membrane model with multiple pore constrictions. Pore constrictions between 5 and 50 nm are realistic, and confirm the mesoporous nature of pit membranes.


Asunto(s)
Oro , Magnoliopsida , Xilema , Transporte Biológico , Perfusión , Agua
3.
Plant Cell Environ ; 47(8): 3063-3075, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38660960

RESUMEN

Embolism resistance of xylem tissue varies among species and is an important trait related to drought resistance, with anatomical attributes like pit membrane thickness playing an important role in avoiding embolism spread. Grafted Citrus trees are commonly grown in orchards, with the rootstock being able to affect the drought resistance of the whole plant. Here, we evaluated how rootstocks affect the vulnerability to embolism resistance of the scion using several rootstock/scion combinations. Scions of 'Tahiti' acid lime, 'Hamlin', 'Pera' and 'Valencia' oranges grafted on a 'Rangpur' lime rootstock exhibit similar vulnerability to embolism. In field-grown trees, measurements of leaf water potential did not suggest significant embolism formation during the dry season, while stomata of Citrus trees presented an isohydric response to declining water availability. When 'Valencia' orange scions were grafted on 'Rangpur' lime, 'IAC 1710' citrandarin, 'Sunki Tropical' mandarin or 'Swingle' citrumelo rootstocks, variation in intervessel pit membrane thickness of the scion was found. The 'Rangpur' lime rootstock, which is known for its drought resistance, induced thicker pit membranes in the scion, resulting in higher embolism resistance than the other rootstocks. Similarly, the rootstock 'IAC 1710' citrandarin generated increased embolism resistance of the scion, which is highly relevant for citriculture.


Asunto(s)
Citrus , Raíces de Plantas , Xilema , Citrus/fisiología , Xilema/fisiología , Raíces de Plantas/fisiología , Agua/metabolismo , Sequías , Hojas de la Planta/fisiología , Hojas de la Planta/anatomía & histología , Estomas de Plantas/fisiología
4.
Ann Bot ; 134(2): 337-350, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38721801

RESUMEN

BACKGROUND AND AIMS: Lianas have higher relative abundance and biomass in drier seasonal forests than in rainforests, but whether this difference is associated with their hydraulic strategies is unclear. Here, we investigate whether lianas of seasonally dry forests are safer and more efficient in water transport than rainforest lianas, explaining patterns of liana abundance. METHODS: We measured hydraulic traits on five pairs of congeneric lianas of the tribe Bignonieae in two contrasting forest sites: the wet 'Dense Ombrophilous Forest' in Central Amazonia (~2 dry months) and the drier 'Semideciduous Seasonal Forest' in the inland Atlantic Forest (~6 dry months). We also gathered a broader database, including 197 trees and 58 liana species from different tropical forests, to compare hydraulic safety between habits and forest types. KEY RESULTS: Bignonieae lianas from both forests had high and similar hydraulic efficiency but exhibited variability in resistance to embolism across forest types when phylogenetic relationships were taken into account. Three genera had higher hydraulic safety in the seasonal forest than in the rainforest, but species across both forests had similar positive hydraulic safety margins despite lower predawn water potential values of seasonal forest lianas. We did not find the safety-efficiency trade-off. Merging our results with previously published data revealed a high variability of resistance to embolism in both trees and lianas, independent of forest types. CONCLUSIONS: The high hydraulic efficiency of lianas detected here probably favours their rapid growth across tropical forests, but differences in hydraulic safety highlight that some species are highly vulnerable and may rely on other mechanisms to cope with drought. Future research on the lethal dehydration threshold and the connection between hydraulic resistance strategies and liana abundance could offer further insights into tropical forest dynamics under climatic threats.


Asunto(s)
Bosque Lluvioso , Estaciones del Año , Clima Tropical , Bosques , Agua/fisiología , Bignoniaceae/fisiología , Árboles/fisiología , Brasil
5.
Ecol Lett ; 26(9): 1485-1496, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37330625

RESUMEN

In vast areas of the world, forests and vegetation are water limited and plant survival depends on the ability to avoid catastrophic hydraulic failure. Therefore, it is remarkable that plants take hydraulic risks by operating at water potentials (ψ) that induce partial failure of the water conduits (xylem). Here we present an eco-evolutionary optimality principle for xylem conduit design that explains this phenomenon based on the hypothesis that conductive efficiency and safety are optimally co-adapted to the environment. The model explains the relationship between the tolerance to negative water potential (ψ50 ) and the environmentally dependent minimum ψ (ψmin ) across a large number of species, and along the xylem pathway within individuals of two species studied. The wider hydraulic safety margin in gymnosperms compared to angiosperms can be explained as an adaptation to a higher susceptibility to accumulation of embolism. The model provides a novel optimality-based perspective on the relationship between xylem safety and efficiency.


Asunto(s)
Sequías , Xilema , Humanos , Árboles , Bosques , Agua , Hojas de la Planta
6.
Ecol Lett ; 26(11): 1829-1839, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37807917

RESUMEN

Tropical rainforest woody plants have been thought to have uniformly low resistance to hydraulic failure and to function near the edge of their hydraulic safety margin (HSM), making these ecosystems vulnerable to drought; however, this may not be the case. Using data collected at 30 tropical forest sites for three key traits associated with drought tolerance, we show that site-level hydraulic diversity of leaf turgor loss point, resistance to embolism (P50 ), and HSMs is high across tropical forests and largely independent of water availability. Species with high HSMs (>1 MPa) and low P50 values (< -2 MPa) are common across the wet and dry tropics. This high site-level hydraulic diversity, largely decoupled from water stress, could influence which species are favoured and become dominant under a drying climate. High hydraulic diversity could also make these ecosystems more resilient to variable rainfall regimes.


Asunto(s)
Ecosistema , Árboles , Clima Tropical , Bosques , Madera , Sequías , Hojas de la Planta , Xilema
7.
New Phytol ; 238(1): 283-296, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36636783

RESUMEN

Although xylem embolism is a key process during drought-induced tree mortality, its relationship to wood anatomy remains debated. While the functional link between bordered pits and embolism resistance is known, there is no direct, mechanistic explanation for the traditional assumption that wider vessels are more vulnerable than narrow ones. We used data from 20 temperate broad-leaved tree species to study the inter- and intraspecific relationship of water potential at 50% loss of conductivity (P50 ) with hydraulically weighted vessel diameter (Dh ) and tested its link to pit membrane thickness (TPM ) and specific conductivity (Ks ) on species level. Embolism-resistant species had thick pit membranes and narrow vessels. While Dh was weakly associated with TPM , the P50 -Dh relationship remained highly significant after accounting for TPM . The interspecific pattern between P50 and Dh was mirrored by a link between P50 and Ks , but there was no evidence for an intraspecific relationship. Our results provide robust evidence for an interspecific P50 -Dh relationship across our species. As a potential cause for the inconsistencies in published P50 -Dh relationships, our analysis suggests differences in the range of trait values covered, and the level of data aggregation (species, tree or sample level) studied.


Asunto(s)
Embolia , Xilema , Xilema/anatomía & histología , Madera/anatomía & histología , Sequías , Agua , Árboles
8.
New Phytol ; 237(5): 1745-1758, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36484140

RESUMEN

The Cretaceous-Cenozoic expansion of tropical forests created canopy space that was subsequently occupied by diverse epiphytic communities including Eupolypod ferns. Eupolypods proliferated in this more stressful niche, where lower competition enabled the adaptive radiation of thousands of species. Here, we examine whether xylem traits helped shape the Cenozoic radiation of Eupolypod ferns. We characterized the petiole xylem anatomy of 39 species belonging to the Eupolypod I and Eupolypod II clades occupying the epiphytic, hemiepiphytic, and terrestrial niche, and we assessed vulnerability to embolism in a subset of species. The transition to the canopy was associated with reduced xylem content and smaller tracheid diameters, but no differences were found in species vulnerability to embolism and pit membrane thickness. Phylogenetic analyses support selection for traits associated with reduced water transport in Eupolypod 1 species. We posit that in Eupolypod epiphytes, selection favored water retention via thicker leaves and lower stomatal density over higher rates of water transport. Consequently, lower leaf water loss was coupled with smaller quantities of xylem and narrower tracheid diameters. Traits associated with water conservation were evident in terrestrial Eupolypod 1 ferns and may have predisposed this clade toward radiation in the canopy.


Asunto(s)
Helechos , Helechos/anatomía & histología , Filogenia , Hojas de la Planta , Agua , Transporte Biológico , Xilema
9.
New Phytol ; 240(5): 1788-1801, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37691289

RESUMEN

Intervessel pits are considered to function as valves that avoid embolism spreading and optimize efficient transport of xylem sap across neighbouring vessels. Hydraulic transport between vessels would therefore follow a safety-efficiency trade-off, which is directly related to the total intervessel pit area (Ap ), inversely related to the pit membrane thickness (TPM ) and driven by a pressure difference. To test this hypothesis, we modelled the relative transport rate of gas (ka ) and water (Q) at the intervessel pit level for 23 angiosperm species and correlated these parameters with the water potential at which 50% of embolism occurs (Ψ50 ). We also measured ka for 10 species using pneumatic measurements. The pressure difference across adjacent vessels and estimated values of ka and Q were related to Ψ50 , following a convex safety-efficiency trade-off based on modelled and experimental data. Minor changes in TPM and Ap exponentially affected the pressure difference and flow, respectively. Our results provide clear evidence that a xylem safety-efficiency trade-off is not linear, but convex due to flow across intervessel pit membranes, which represent mesoporous media within microporous conduits. Moreover, the convex nature of long-distance xylem transport may contribute to an adjustable fluid balance of plants, depending on environmental conditions.


Asunto(s)
Embolia , Magnoliopsida , Plantas , Xilema , Agua
10.
New Phytol ; 237(4): 1256-1269, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36366950

RESUMEN

Fuel moisture content (FMC) is a crucial driver of forest fires in many regions world-wide. Yet, the dynamics of FMC in forest canopies as well as their physiological and environmental determinants remain poorly understood, especially under extreme drought. We embedded a FMC module in the trait-based, plant-hydraulic SurEau-Ecos model to provide innovative process-based predictions of leaf live fuel moisture content (LFMC) and canopy fuel moisture content (CFMC) based on leaf water potential ( ψ Leaf ). SurEau-Ecos-FMC relies on pressure-volume (p-v) curves to simulate LFMC and vulnerability curves to cavitation to simulate foliage mortality. SurEau-Ecos-FMC accurately reproduced ψ Leaf and LFMC dynamics as well as the occurrence of foliage mortality in a Mediterranean Quercus ilex forest. Several traits related to water use (leaf area index, available soil water, and transpiration regulation), vulnerability to cavitation, and p-v curves (full turgor osmotic potential) had the greatest influence on LFMC and CFMC dynamics. As the climate gets drier, our results showed that drought-induced foliage mortality is expected to increase, thereby significantly decreasing CFMC. Our results represent an important advance in our capacity to understand and predict the sensitivity of forests to wildfires.


Asunto(s)
Sequías , Incendios Forestales , Bosques , Árboles/fisiología , Hojas de la Planta/fisiología , Agua/fisiología
11.
New Phytol ; 239(2): 576-591, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37222272

RESUMEN

Water stress can cause declines in plant function that persist after rehydration. Recent work has defined 'resilience' traits characterizing leaf resistance to persistent damage from drought, but whether these traits predict resilience in whole-plant function is unknown. It is also unknown whether the coordination between resilience and 'resistance' - the ability to maintain function during drought - observed globally occurs within ecosystems. For eight rainforest species, we dehydrated and subsequently rehydrated leaves, and measured water stress thresholds for declines in rehydration capacity and maximum quantum yield of photosystem II (Fv /Fm ). We tested correlations with embolism resistance and dry season water potentials (ΨMD ), and calculated safety margins for damage (ΨMD - thresholds) and tested correlations with drought resilience in sap flow and growth. Ψ thresholds for persistent declines in Fv /Fm , indicating resilience, were positively correlated with ΨMD and thresholds for leaf vein embolism. Safety margins for persistent declines in Fv /Fm , but not rehydration capacity, were positively correlated with drought resilience in sap flow. Correlations between resistance and resilience suggest that species' differences in performance during drought are perpetuated after drought, potentially accelerating shifts in forest composition. Resilience to photochemical damage emerged as a promising functional trait to characterize whole-plant drought resilience.


Asunto(s)
Deshidratación , Bosque Lluvioso , Ecosistema , Sequías , Hojas de la Planta , Árboles
12.
New Phytol ; 240(5): 1774-1787, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37743552

RESUMEN

Evolutionary radiations of woody taxa within arid environments were made possible by multiple trait innovations including deep roots and embolism-resistant xylem, but little is known about how these traits have coevolved across the phylogeny of woody plants or how they jointly influence the distribution of species. We synthesized global trait and vegetation plot datasets to examine how rooting depth and xylem vulnerability across 188 woody plant species interact with aridity, precipitation seasonality, and water table depth to influence species occurrence probabilities across all biomes. Xylem resistance to embolism and rooting depth are independent woody plant traits that do not exhibit an interspecific trade-off. Resistant xylem and deep roots increase occurrence probabilities in arid, seasonal climates over deep water tables. Resistant xylem and shallow roots increase occurrence probabilities in arid, nonseasonal climates over deep water tables. Vulnerable xylem and deep roots increase occurrence probabilities in arid, nonseasonal climates over shallow water tables. Lastly, vulnerable xylem and shallow roots increase occurrence probabilities in humid climates. Each combination of trait values optimizes occurrence probabilities in unique environmental conditions. Responses of deeply rooted vegetation may be buffered if evaporative demand changes faster than water table depth under climate change.


Asunto(s)
Embolia , Agua Subterránea , Agua/fisiología , Madera/fisiología , Xilema/fisiología , Plantas , Hojas de la Planta/fisiología , Sequías
13.
Plant Physiol ; 190(1): 371-386, 2022 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-35567500

RESUMEN

Embolism spreading in xylem is an important component of plant drought resistance. Since embolism resistance has been shown to be mechanistically linked to pit membrane characters in stem xylem, we speculate that similar mechanisms account for leaf xylem. We conducted transmission electron microscopy to investigate pit membrane characters in leaf xylem across 18 Neotropical tree species. We also conducted gold perfusion and polar lipid detection experiments on three species covering the full range of leaf embolism resistance. We then related these observations to previously published data on embolism resistance of leaf xylem. We also incorporated previously published data on stem embolism resistance and stem xylem pit membranes to investigate the link between vulnerability segmentation (i.e. difference in embolism resistance) and leaf-stem anatomical variation. Maximum pit membrane thickness (Tpm,max) and the pit membrane thickness-to-diameter ratio (Tpm,max/Dpm) were predictive of leaf embolism resistance, especially when vestured pits were taken into account. Variation in Tpm,max/Dpm was the only trait predictive of vulnerability segmentation between leaves and stems. Gold particles of 5- and 10-nm infiltrated pit membranes in three species, while the entry of 50-nm particles was blocked. Moreover, polar lipids were associated with inner conduit walls and pits. Our results suggest that mechanisms related to embolism spreading are determined by Tpm, pore constrictions (i.e. the narrowest bottlenecks along pore pathways), and lipid surfactants, which are largely similar between leaf and stem xylem and between temperate and tropical trees. However, our mechanistic understanding of embolism propagation and the functional relevance of Tpm,max/Dpm remains elusive.


Asunto(s)
Embolia , Árboles , Sequías , Oro , Lípidos , Hojas de la Planta , Agua , Xilema
14.
Proc Natl Acad Sci U S A ; 117(20): 10733-10739, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32358185

RESUMEN

Biological and technological processes that involve liquids under negative pressure are vulnerable to the formation of cavities. Maximal negative pressures found in plants are around -100 bar, even though cavitation in pure bulk water only occurs at much more negative pressures on the relevant timescales. Here, we investigate the influence of small solutes and lipid bilayers, both constituents of all biological liquids, on the formation of cavities under negative pressures. By combining molecular dynamics simulations with kinetic modeling, we quantify cavitation rates on biologically relevant length scales and timescales. We find that lipid bilayers, in contrast to small solutes, increase the rate of cavitation, which remains unproblematically low at the pressures found in most plants. Only when the negative pressures approach -100 bar does cavitation occur on biologically relevant timescales. Our results suggest that bilayer-based cavitation is what generally limits the magnitude of negative pressures in liquids that contain lipid bilayers.


Asunto(s)
Membrana Dobles de Lípidos/química , Simulación de Dinámica Molecular , Presión , Cinética
15.
Plant J ; 105(6): 1477-1494, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33295003

RESUMEN

Lipids have been observed attached to lumen-facing surfaces of mature xylem conduits of several plant species, but there has been little research on their functions or effects on water transport, and only one lipidomic study of the xylem apoplast. Therefore, we conducted lipidomic analyses of xylem sap from woody stems of seven plants representing six major angiosperm clades, including basal magnoliids, monocots and eudicots, to characterize and quantify phospholipids, galactolipids and sulfolipids in sap using mass spectrometry. Locations of lipids in vessels of Laurus nobilis were imaged using transmission electron microscopy and confocal microscopy. Xylem sap contained the galactolipids di- and monogalactosyldiacylglycerol, as well as all common plant phospholipids, but only traces of sulfolipids, with total lipid concentrations in extracted sap ranging from 0.18 to 0.63 nmol ml-1 across all seven species. Contamination of extracted sap from lipids in cut living cells was found to be negligible. Lipid composition of sap was compared with wood in two species and was largely similar, suggesting that sap lipids, including galactolipids, originate from cell content of living vessels. Seasonal changes in lipid composition of sap were observed for one species. Lipid layers coated all lumen-facing vessel surfaces of L. nobilis, and lipids were highly concentrated in inter-vessel pits. The findings suggest that apoplastic, amphiphilic xylem lipids are a universal feature of angiosperms. The findings require a reinterpretation of the cohesion-tension theory of water transport to account for the effects of apoplastic lipids on dynamic surface tension and hydraulic conductance in xylem.


Asunto(s)
Lípidos/análisis , Magnoliopsida/química , Xilema/química , Galactolípidos/análisis , Galactolípidos/metabolismo , Lipidómica , Magnoliopsida/genética , Magnoliopsida/metabolismo , Microscopía Confocal , Microscopía Electrónica de Transmisión , Fosfolípidos/análisis , Fosfolípidos/metabolismo , Filogenia , Estaciones del Año , Xilema/metabolismo , Xilema/ultraestructura
16.
New Phytol ; 236(6): 2019-2036, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36039697

RESUMEN

Hydraulic failure resulting from drought-induced embolism in the xylem of plants is a key determinant of reduced productivity and mortality. Methods to assess this vulnerability are difficult to achieve at scale, leading to alternative metrics and correlations with more easily measured traits. These efforts have led to the longstanding and pervasive assumed mechanistic link between vessel diameter and vulnerability in angiosperms. However, there are at least two problems with this assumption that requires critical re-evaluation: (1) our current understanding of drought-induced embolism does not provide a mechanistic explanation why increased vessel width should lead to greater vulnerability, and (2) the most recent advancements in nanoscale embolism processes suggest that vessel diameter is not a direct driver. Here, we review data from physiological and comparative wood anatomy studies, highlighting the potential anatomical and physicochemical drivers of embolism formation and spread. We then put forward key knowledge gaps, emphasising what is known, unknown and speculation. A meaningful evaluation of the diameter-vulnerability link will require a better mechanistic understanding of the biophysical processes at the nanoscale level that determine embolism formation and spread, which will in turn lead to more accurate predictions of how water transport in plants is affected by drought.


Asunto(s)
Embolia , Magnoliopsida , Sequías , Agua/fisiología , Xilema/fisiología
17.
Plant Cell Environ ; 45(4): 1204-1215, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34984700

RESUMEN

Xylem embolism resistance varies across species influencing drought tolerance, yet little is known about the determinants of the embolism resistance of an individual conduit. Here we conducted an experiment using the optical vulnerability method to test whether individual conduits have a specific water potential threshold for embolism formation and whether pre-existing embolism in neighbouring conduits alters this threshold. Observations were made on a diverse sample of angiosperm and conifer species through a cycle of dehydration, rehydration and subsequent dehydration to death. Upon rehydration after the formation of embolism, no refilling was observed. When little pre-existing embolism was present, xylem conduits had a conserved, individual embolism-resistance threshold that varied across the population of conduits. The consequence of a variable conduit-specific embolism threshold is that a small degree of pre-existing embolism in the xylem results in apparently more resistant xylem in subsequent dehydrations, particularly in angiosperms with vessels. While our results suggest that pit membranes separating xylem conduits are critical for maintaining a conserved individual conduit threshold for embolism when little pre-existing embolism is present, as the percentage of embolized conduits increases, gas movement, local pressure differences and connectivity between conduits increasingly contribute to embolism spread.


Asunto(s)
Embolia , Magnoliopsida , Deshidratación , Agua , Xilema
18.
Ann Bot ; 130(3): 331-344, 2022 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-35696156

RESUMEN

BACKGROUND AND AIMS: Ferns are the second largest group of vascular plants and are distributed nearly worldwide. Although ferns have been integrated into some comparative ecological studies focusing on hydathodes, there is a considerable gap in our understanding of the functional anatomy of these secretory tissues that are found on the vein endings of many fern leaves. In this study, we aimed to investigate the phylogenetic distribution, structure and function of fern hydathodes. METHODS: We performed a global review on fern hydathodes and their phylogenetic distribution, carried out an ancestral character state reconstruction, and studied the structure, guttation and elemental composition of salt residues of eight species, and the diurnal patterns of xylem pressure of two species. KEY RESULTS: Hydathodes are known from 1189 fern species, 92 genera and 19 families of 2 orders, Equisetales and Polypodiales. Stochastic character mapping indicated multiple gains and losses of hydathodes at the genus level, occurring especially during the last 50 million years of fern evolution. Hydathodes were located on the adaxial leaf surface and characterized by a cytoplasm-rich, pore-free epidermis, and became functional for several weeks after nearly complete leaf expansion. In two species, positive xylem pressure built up at night, potentially facilitating guttation. Guttation fluid was rich in Ca and often Si, but also contained P, Mg, Na and Al. CONCLUSIONS: Stochastic character mapping and the structural and functional diversity of hydathodes indicate multiple origins, and their presence/absence in closely related taxa implies secondary losses during fern evolution. Positive xylem pressure and high air humidity play an important role as drivers of guttation. Hydathodes may contribute to the regulation of leaf nutrient stoichiometry by the release of excessive compounds and minerals other than waste products, but the presence of essential chemical elements in salt residues also indicates possible leakage.


Asunto(s)
Helechos , Helechos/anatomía & histología , Filogenia , Hojas de la Planta , Residuos , Xilema
19.
Ann Bot ; 129(6): 709-722, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33245747

RESUMEN

BACKGROUND AND AIMS: The acquisitive-conservative axis of plant ecological strategies results in a pattern of leaf trait covariation that captures the balance between leaf construction costs and plant growth potential. Studies evaluating trait covariation within species are scarcer, and have mostly dealt with variation in response to environmental gradients. Little work has been published on intraspecific patterns of leaf trait covariation in the absence of strong environmental variation. METHODS: We analysed covariation of four leaf functional traits [specific leaf area (SLA) leaf dry matter content (LDMC), force to tear (Ft) and leaf nitrogen content (Nm)] in six Poaceae and four Fabaceae species common in the dry Chaco forest of Central Argentina, growing in the field and in a common garden. We compared intraspecific covariation patterns (slopes, correlation and effect size) of leaf functional traits with global interspecific covariation patterns. Additionally, we checked for possible climatic and edaphic factors that could affect the intraspecific covariation pattern. KEY RESULTS: We found negative correlations for the LDMC-SLA, Ft-SLA, LDMC-Nm and Ft-Nm trait pairs. This intraspecific covariation pattern found both in the field and in the common garden and not explained by climatic or edaphic variation in the field follows the expected acquisitive-conservative axis. At the same time, we found quantitative differences in slopes among different species, and between these intraspecific patterns and the interspecific ones. Many of these differences seem to be idiosyncratic, but some appear consistent among species (e.g. all the intraspecific LDMC-SLA and LDMC-Nm slopes tend to be shallower than the global pattern). CONCLUSIONS: Our study indicates that the acquisitive-conservative leaf functional trait covariation pattern occurs at the intraspecific level even in the absence of relevant environmental variation in the field. This suggests a high degree of variation-covariation in leaf functional traits not driven by environmental variables.


Asunto(s)
Bosques , Nitrógeno , Ecología , Fenotipo , Hojas de la Planta , Poaceae
20.
Am J Bot ; 109(1): 46-57, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34643269

RESUMEN

PREMISE: Extrafloral nectaries have mainly been studied in angiosperms, but have also been reported in 39 fern species. Here we provide a global review of nectaries in ferns and examined their structure, function, and nectar sugar composition in two genera. METHODS: We searched in the literature and living plant collections of botanical gardens for indications of fern nectaries, observed nectar-feeding animals, studied the morphoanatomy in the two genera Aglaomorpha and Campyloneurum, and analyzed the total sugar concentrations and ratios of 16 species. Diurnal nectar release was observed with time-lapse photography. RESULTS: We found evidence for nectaries in 101 species of ferns from 11 genera and 6 families. Most of the nectary-bearing species were tree ferns (Cyatheaceae) and epiphytic ferns of the family Polypodiaceae. Nectaries consisted of cytoplasm-rich parenchyma with large nuclei and an epidermis with or without stomata, were attached to amphiphloic vascular bundles, and released nectar on the lower leaf surface mainly on expanding leaves during the night. Sugar concentrations varied between species (3.8-15.3%) but not between genera, and were sucrose-dominant (3 spp.), sucrose-rich (7), or hexose-rich (3). In the greenhouse, introduced ants, scale insects, and snails fed on the nectar. CONCLUSIONS: The wide taxonomic distribution, variable morphology, locations, and sugar compositions point to multiple evolutionary origins of fern nectaries. Nectar release in young leaves might attract mutualistic ants to protect leaves against herbivores only during this most vulnerable developmental stage. Even ex-situ, fern nectar is a valuable food source because it attracted several opportunistic animal species.


Asunto(s)
Hormigas , Helechos , Animales , Herbivoria , Humanos , Néctar de las Plantas/química , Azúcares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA