Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 90(2): e0149223, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38299813

RESUMEN

The rumen houses a diverse community that plays a major role in the digestion process in ruminants. Anaerobic gut fungi (AGF) are key contributors to plant digestion in the rumen. Here, we present a global amplicon-based survey of the rumen AGF mycobiome by examining 206 samples from 15 animal species, 15 countries, and 6 continents. The rumen AGF mycobiome was highly diverse, with 81 out of 88 currently recognized AGF genera or candidate genera identified. However, only six genera (Neocallimastix, Orpinomyces, Caecomyces, Cyllamyces, NY9, and Piromyces) were present at >4% relative abundance. AGF diversity was higher in members of the families Antilocapridae and Cervidae compared to Bovidae. Community structure analysis identified a pattern of phylosymbiosis, where host family (10% of total variance) and species (13.5%) partially explained the rumen mycobiome composition. As well, diet composition (9%-19%), domestication (11.14%), and biogeography (14.1%) also partially explained AGF community structure; although sampling limitation, geographic range restrictions, and direct association between different factors hindered accurate elucidation of the relative contribution of each factor. Pairwise comparison of rumen and fecal samples obtained from the same subject (n = 13) demonstrated greater diversity and inter-sample variability in rumen versus fecal samples. The genera Neocallimastix and Orpinomyces were present in higher abundance in rumen samples, while Cyllamyces and Caecomyces were enriched in fecal samples. Comparative analysis of global rumen and feces data sets revealed a similar pattern. Our results provide a global view of AGF community in the rumen and identify patterns of AGF variability between rumen and feces in herbivores Gastrointestinal (GI) tract.IMPORTANCERuminants are highly successful and economically important mammalian suborder. Ruminants are herbivores that digest plant material with the aid of microorganisms residing in their GI tract. In ruminants, the rumen compartment represents the most important location where microbially mediated plant digestion occurs, and is known to house a bewildering array of microbial diversity. An important component of the rumen microbiome is the anaerobic gut fungi (AGF), members of the phylum Neocallimastigomycota. So far, studies examining AGF diversity have mostly employed fecal samples, and little is currently known regarding the identity of AGF residing in the rumen compartment, factors that impact the observed patterns of diversity and community structure of AGF in the rumen, and how AGF communities in the rumen compare to AGF communities in feces. Here, we examined the rumen AGF diversity using an amplicon-based survey targeting a wide range of wild and domesticated ruminants (n = 206, 15 different animal species) obtained from 15 different countries. Our results demonstrate that while highly diverse, no new AGF genera were identified in the rumen mycobiome samples examined. Our analysis also indicate that animal host phylogeny, diet, biogeography, and domestication status could play a role in shaping AGF community structure. Finally, we demonstrate that a greater level of diversity and higher inter-sample variability was observed in rumen compared to fecal samples, with two genera (Neocallimastix and Orpinomyces) present in higher abundance in rumen samples, and two others (Cyllamyces and Caecomyces) enriched in fecal samples. Our results provide a global view of the identity, diversity, and community structure of AGF in ruminants, elucidate factors impacting diversity and community structure of the rumen mycobiome, and identify patterns of AGF community variability between the rumen and feces in the herbivorous GI tract.


Asunto(s)
Ciervos , Rumen , Humanos , Animales , Anaerobiosis , Rumen/microbiología , Herbivoria , Hongos/genética , Rumiantes
2.
J Sci Food Agric ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816930

RESUMEN

BACKGROUND: Low rumen pH is proposed to be a major mechanism for low methane (CH4) emissions from sheep fed forage rape. However, it is difficult to separate this from other in vivo factors, such as rumen passage rate. The objective of this study was to determine the effect of pH alone on CH4 production in vitro using different pH buffers. Ryegrass, white clover and forage rape were incubated in vitro using three different incubation buffers with starting pH values of 5.5, 6.2 and 6.8. RESULTS: Decreasing pH reduced overall in vitro CH4 emission relative to fermented hexoses (CH4/FHex) by up to 54% and overall fermentation by 40%. pH also changed fermentation profiles where the acetate + butyrate to propionate + valerate ratio decreased when pH decreased. Within the three forages, forage rape led to the lowest CH4/FHex, but only in pH 5.5 and 6.2 buffer, and this was enhanced when the pH fell below 6. CONCLUSION: Reducing pH in vitro decreased CH4 production and overall fermentation across all forages. The lower pH reached by forage rape compared to ryegrass and white clover appears to drive the lower CH4 production relative to the extent of fermentation from forage rape compared to the other forages. © 2024 The Author(s). Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

3.
BMC Genomics ; 24(1): 551, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37723422

RESUMEN

BACKGROUND: Producing animal protein while reducing the animal's impact on the environment, e.g., through improved feed efficiency and lowered methane emissions, has gained interest in recent years. Genetic selection is one possible path to reduce the environmental impact of livestock production, but these traits are difficult and expensive to measure on many animals. The rumen microbiome may serve as a proxy for these traits due to its role in feed digestion. Restriction enzyme-reduced representation sequencing (RE-RRS) is a high-throughput and cost-effective approach to rumen metagenome profiling, but the systematic (e.g., sequencing) and biological factors influencing the resulting reference based (RB) and reference free (RF) profiles need to be explored before widespread industry adoption is possible. RESULTS: Metagenome profiles were generated by RE-RRS of 4,479 rumen samples collected from 1,708 sheep, and assigned to eight groups based on diet, age, time off feed, and country (New Zealand or Australia) at the time of sample collection. Systematic effects were found to have minimal influence on metagenome profiles. Diet was a major driver of differences between samples, followed by time off feed, then age of the sheep. The RF approach resulted in more reads being assigned per sample and afforded greater resolution when distinguishing between groups than the RB approach. Normalizing relative abundances within the sampling Cohort abolished structures related to age, diet, and time off feed, allowing a clear signal based on methane emissions to be elucidated. Genus-level abundances of rumen microbes showed low-to-moderate heritability and repeatability and were consistent between diets. CONCLUSIONS: Variation in rumen metagenomic profiles was influenced by diet, age, time off feed and genetics. Not accounting for environmental factors may limit the ability to associate the profile with traits of interest. However, these differences can be accounted for by adjusting for Cohort effects, revealing robust biological signals. The abundances of some genera were consistently heritable and repeatable across different environments, suggesting that metagenomic profiles could be used to predict an individual's future performance, or performance of its offspring, in a range of environments. These results highlight the potential of using rumen metagenomic profiles for selection purposes in a practical, agricultural setting.


Asunto(s)
Metagenoma , Microbiota , Animales , Ovinos/genética , Rumen , Ganado , Metano
4.
Appl Environ Microbiol ; 89(10): e0063423, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37800930

RESUMEN

Hydrogen (H2) is the primary electron donor for methane formation in ruminants, but the H2-producing organisms involved are largely uncharacterized. This work integrated studies of microbial physiology and genomics to characterize rumen bacterial isolate NK3A20 of the family Lachnospiraceae. Isolate NK3A20 was the first recognized isolate of the NK3A20 group, which is among the ten most abundant bacterial genera in 16S rRNA gene surveys of rumen microbiota. NK3A20 produced acetate, butyrate, H2, and formate from glucose. The end product ratios varied when grown with different substrates and at different H2 partial pressures. NK3A20 produced butyrate as a major product using glucose or under high H2 partial pressures and switched to mainly acetate in the presence of galacturonic acid (an oxidized sugar) or in coculture with a methanogen. Growth with galacturonic acid was faster at elevated H2 concentrations, while elevated H2 slowed growth with glucose. Genome analyses revealed the presence of multiple hydrogenases including a membrane-bound Ech hydrogenase, an electron bifurcating butyryl-CoA dehydrogenase (Bcd-Etf), and an Rnf complex that may be involved in modulating the observed metabolic pathway changes, providing insight into H2 formation in the rumen. IMPORTANCE The genus-level NK3A20 group is one of the ten most abundant genera of rumen bacteria. Like most of the rumen bacteria that produce the hydrogen that is converted to methane in the rumen, it is understudied, without any previously characterized isolates. We investigated isolate NK3A20, a cultured member of this genus, and showed that it modulates hydrogen production in response to its growth substrates and the hydrogen concentration in its environment. Low-hydrogen concentrations stimulated hydrogen formation, while high concentrations inhibited its formation and shifted the fermentation to more reduced organic acid products. We found that growth on uronic acids, components of certain plant polymers, resulted in low hydrogen yields compared to glucose, which could aid in the selection of low-methane feeds. A better understanding of the major genera that produce hydrogen in the rumen is part of developing strategies to mitigate biogenic methane emitted by livestock agriculture.


Asunto(s)
Euryarchaeota , Rumen , Animales , Rumen/microbiología , Técnicas de Cocultivo , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Bacterias/genética , Rumiantes , Euryarchaeota/metabolismo , Fermentación , Glucosa/metabolismo , Clostridiales/metabolismo , Acetatos/metabolismo , Butiratos/metabolismo , Metano/metabolismo , Hidrógeno/metabolismo
5.
Artículo en Inglés | MEDLINE | ID: mdl-37170869

RESUMEN

Two strains of Gram-negative, anaerobic, rod-shaped bacteria, from an abundant but uncharacterized rumen bacterial group of the order 'Christensenellales', were phylogenetically and phenotypically characterized. These strains, designated R-7T and WTE2008T, shared 98.6-99.0 % sequence identity between their 16S rRNA gene sequences. R-7T and WTE2008T clustered together on a distinct branch from other Christensenellaceae strains and had <88.1 % sequence identity to the closest type-strain sequence from Luoshenia tenuis NSJ-44T. The genome sequences of R-7T and WTE2008T had 83.6 % average nucleotide identity to each other, and taxonomic assignment using the Genome Taxonomy Database indicates these are separate species within a novel family of the order 'Christensenellales'. Cells of R-7T and WTE2008T lacked any obvious appendages and their cell wall ultra-structures were characteristic of Gram-negative bacteria. The five most abundant cellular fatty acids of both strains were C16 : 0, C16 : 0 iso, C17 : 0 anteiso, C18 : 0 and C15 : 0 anteiso. The strains used a wide range of the 23 soluble carbon sources tested, and grew best on cellobiose, but not on sugar-alcohols. Xylan and pectin were fermented by both strains, but not cellulose. Acetate, hydrogen, ethanol and lactate were the major fermentation end products. R-7T produced considerably more hydrogen than WTE2008T, which produced more lactate. Based on these analyses, Aristaeellaceae fam. nov. and Aristaeella gen. nov., with type species Aristaeella hokkaidonensis sp. nov., are proposed. Strains R-7T (=DSM 112795T=JCM 34733T) and WTE2008T (=DSM 112788T=JCM 34734T) are the proposed type strains for Aristaeella hokkaidonensis sp. nov. and Aristaeella lactis sp. nov., respectively.


Asunto(s)
Ácidos Grasos , Rumen , Animales , Ácidos Grasos/química , ARN Ribosómico 16S/genética , Filogenia , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Composición de Base , Análisis de Secuencia de ADN , Bacterias Gramnegativas , Hidrógeno
6.
Genet Sel Evol ; 55(1): 53, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37491204

RESUMEN

BACKGROUND: Rumen microbes break down complex dietary carbohydrates into energy sources for the host and are increasingly shown to be a key aspect of animal performance. Host genotypes can be combined with microbial DNA sequencing to predict performance traits or traits related to environmental impact, such as enteric methane emissions. Metagenome profiles were generated from 3139 rumen samples, collected from 1200 dual purpose ewes, using restriction enzyme-reduced representation sequencing (RE-RRS). Phenotypes were available for methane (CH4) and carbon dioxide (CO2) emissions, the ratio of CH4 to CH4 plus CO2 (CH4Ratio), feed efficiency (residual feed intake: RFI), liveweight at the time of methane collection (LW), liveweight at 8 months (LW8), fleece weight at 12 months (FW12) and parasite resistance measured by faecal egg count (FEC1). We estimated the proportion of phenotypic variance explained by host genetics and the rumen microbiome, as well as prediction accuracies for each of these traits. RESULTS: Incorporating metagenome profiles increased the variance explained and prediction accuracy compared to fitting only genomics for all traits except for CO2 emissions when animals were on a grass diet. Combining the metagenome profile with host genotype from lambs explained more than 70% of the variation in methane emissions and residual feed intake. Predictions were generally more accurate when incorporating metagenome profiles compared to genetics alone, even when considering profiles collected at different ages (lamb vs adult), or on different feeds (grass vs lucerne pellet). A reference-free approach to metagenome profiling performed better than metagenome profiles that were restricted to capturing genera from a reference database. We hypothesise that our reference-free approach is likely to outperform other reference-based approaches such as 16S rRNA gene sequencing for use in prediction of individual animal performance. CONCLUSIONS: This paper shows the potential of using RE-RRS as a low-cost, high-throughput approach for generating metagenome profiles on thousands of animals for improved prediction of economically and environmentally important traits. A reference-free approach using a microbial relationship matrix from log10 proportions of each tag normalized within cohort (i.e., the group of animals sampled at the same time) is recommended for future predictions using RE-RRS metagenome profiles.


Asunto(s)
Metagenoma , Metano , Ovinos/genética , Animales , Femenino , Rumen , Dióxido de Carbono , ARN Ribosómico 16S/genética , Fenotipo , Dieta/veterinaria , Alimentación Animal
7.
Anaerobe ; 54: 31-38, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30055268

RESUMEN

Sharpea and Kandleria are associated with rumen samples from low-methane-emitting sheep. Four strains of each genus were studied in culture, and the genomes of nine strains were analysed, to understand the physiology of these bacteria. All eight cultures grew equally well with d-glucose, d-fructose, d-galactose, cellobiose, and sucrose supplementation. d-Lactate was the major end product, with small amounts of the mixed acid fermentation products formate, acetate and ethanol. Genes encoding the enzymes necessary for this fermentation pattern were found in the genomes of four strains of Sharpea and five of Kandleria. Strains of Sharpea produced traces of hydrogen gas in pure culture, but strains of Kandleria did not. This was consistent with finding that Sharpea, but not Kandleria, genomes contained genes coding for hydrogenases. It was speculated that, in co-culture with a methanogen, Sharpea and Kandleria might change their fermentation pattern from a predominately homolactic to a predominately mixed acid fermentation, which would result in a decrease in lactate production and an increase in formation of acetate and perhaps ethanol. However, Sharpea and Kandleria did not change their fermentation products when co-cultured with Methanobrevibacter olleyae, a methanogen that can use both hydrogen and formate, and lactate remained the major end product. The results of this study therefore support a hypothesis that explains the link between lower methane yields and larger populations of Sharpea and Kandleria in the rumens of sheep.


Asunto(s)
Firmicutes/metabolismo , Ácido Láctico/metabolismo , Lactobacillales/metabolismo , Metano/metabolismo , Methanobrevibacter/crecimiento & desarrollo , Rumen/microbiología , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Técnicas de Cocultivo , Fermentación , Firmicutes/genética , Firmicutes/crecimiento & desarrollo , Firmicutes/aislamiento & purificación , Hidrógeno/metabolismo , Hidrogenasas/genética , Hidrogenasas/metabolismo , Lactobacillales/genética , Lactobacillales/crecimiento & desarrollo , Lactobacillales/aislamiento & purificación , Methanobrevibacter/metabolismo , Ovinos
8.
Genome Res ; 24(9): 1517-25, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24907284

RESUMEN

Ruminant livestock represent the single largest anthropogenic source of the potent greenhouse gas methane, which is generated by methanogenic archaea residing in ruminant digestive tracts. While differences between individual animals of the same breed in the amount of methane produced have been observed, the basis for this variation remains to be elucidated. To explore the mechanistic basis of this methane production, we measured methane yields from 22 sheep, which revealed that methane yields are a reproducible, quantitative trait. Deep metagenomic and metatranscriptomic sequencing demonstrated a similar abundance of methanogens and methanogenesis pathway genes in high and low methane emitters. However, transcription of methanogenesis pathway genes was substantially increased in sheep with high methane yields. These results identify a discrete set of rumen methanogens whose methanogenesis pathway transcription profiles correlate with methane yields and provide new targets for CH4 mitigation at the levels of microbiota composition and transcriptional regulation.


Asunto(s)
Proteínas Arqueales/genética , Metagenoma , Metano/biosíntesis , Microbiota , Rumen/microbiología , Ovinos/microbiología , Animales , Archaea/genética , Archaea/metabolismo , Proteínas Arqueales/metabolismo , Secuencia de Bases , Datos de Secuencia Molecular , Fenotipo , Carácter Cuantitativo Heredable , Rumen/metabolismo , Ovinos/metabolismo , Transcriptoma
9.
Environ Microbiol ; 18(9): 3010-21, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26643468

RESUMEN

Symbiotic associations are ubiquitous in the microbial world and have a major role in shaping the evolution of both partners. One of the most interesting mutualistic relationships exists between protozoa and methanogenic archaea in the fermentative forestomach (rumen) of ruminant animals. Methanogens reside within and on the surface of protozoa as symbionts, and interspecies hydrogen transfer is speculated to be the main driver for physical associations observed between the two groups. In silico analyses of several rumen methanogen genomes have previously shown that up to 5% of genes encode adhesin-like proteins, which may be central to rumen interspecies attachment. We hypothesized that adhesin-like proteins on methanogen cell surfaces facilitate attachment to protozoal hosts. Using phage display technology, we have identified a protein (Mru_1499) from Methanobrevibacter ruminantium M1 as an adhesin that binds to a broad range of rumen protozoa (including the genera Epidinium and Entodinium). This unique adhesin also binds the cell surface of the bacterium Butyrivibrio proteoclasticus, suggesting a broad adhesion spectrum for this protein.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Proteínas Arqueales/metabolismo , Cilióforos/microbiología , Hidrógeno/metabolismo , Metano/metabolismo , Methanobrevibacter/metabolismo , Rumen/microbiología , Adhesinas Bacterianas/genética , Animales , Proteínas Arqueales/genética , Bovinos , Cilióforos/fisiología , Methanobrevibacter/clasificación , Methanobrevibacter/genética , Methanobrevibacter/aislamiento & purificación , Rumen/parasitología
10.
Microbiology (Reading) ; 162(3): 459-465, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26813792

RESUMEN

Only limited information is available on the roles of different rumen ciliate community types, first described by Eadie in 1962, in enteric methane (CH4) formation by their ruminant hosts. If the different types were differentially associated with CH4 formation, then ciliate community typing could be used to identify naturally high and low CH4-emitting animals. Here we measured the CH4 yields [g CH4 (kg feed dry matter intake, DMI)(-1)] of 118 sheep fed a standard pelleted lucerne diet at two different times, at least 2 weeks apart. There were significant differences (P < 2.2 × 10(-16), Wilcoxon rank sum test) in the CH4 yields (± sd) from sheep selected as high [16.7 ± 1.5 g CH4 (kg DMI)(-1)] and low emitters [13.3 ± 1.5 g CH4 (kg DMI)(-1)]. A rumen sample was collected after each of the two measurements, and ciliate composition was analysed using barcoded 454 Titanium pyrosequencing of 18S rRNA genes. The genera found, in order of mean relative abundance, were Epidinium, Entodinium, Dasytricha, Eudiplodinium, Polyplastron, Isotricha and Anoplodinium-Diplodinium, none of which was significantly correlated with the CH4 emissions ranking associated with the rumen sample. Ciliate communities naturally assembled into four types (A, AB, B and O), characterized by the presence and absence of key genera. There was no difference in CH4 yield between sheep that harboured different ciliate community types, suggesting that these did not underlie the natural variation in CH4 yields. Further research is needed to unravel the nature of interactions between ciliate protozoa and other rumen micro-organisms, which may ultimately lead to contrasting CH4 emission phenotypes.


Asunto(s)
Biota , Cilióforos/clasificación , Cilióforos/metabolismo , Dieta/métodos , Medicago sativa/metabolismo , Metano/metabolismo , Rumen/parasitología , Alimentación Animal , Animales , Cilióforos/genética , Cilióforos/aislamiento & purificación , ADN Protozoario/química , ADN Protozoario/genética , ADN Ribosómico/química , ADN Ribosómico/genética , ARN Ribosómico 18S/genética , Análisis de Secuencia de ADN , Ovinos
11.
J Nutr ; 146(9): 1714-21, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27511925

RESUMEN

BACKGROUND: Different carbohydrates ingested greatly influence rumen fermentation and microbiota and gaseous methane emissions. Dissolved hydrogen concentration is related to rumen fermentation and methane production. OBJECTIVES: We tested the hypothesis that carbohydrates ingested greatly alter the rumen environment in dairy cows, and that dissolved hydrogen concentration is associated with these changes in rumen fermentation and microbiota. METHODS: Twenty-eight lactating Chinese Holstein dairy cows [aged 4-5 y, body weight 480 ± 37 kg (mean ± SD)] were used in a randomized complete block design to investigate effects of 4 diets differing in forage content (45% compared with 35%) and source (rice straw compared with a mixture of rice straw and corn silage) on feed intake, rumen fermentation, and microbial populations. RESULTS: Feed intake (10.7-12.6 kg/d) and fiber degradation (0.584-0.692) greatly differed (P ≤ 0.05) between cows fed the 4 diets, leading to large differences (P ≤ 0.05) in gaseous methane yield (27.2-37.3 g/kg organic matter digested), dissolved hydrogen (0.258-1.64 µmol/L), rumen fermentation products, and microbiota. Ruminal dissolved hydrogen was negatively correlated (r < -0.40; P < 0.05) with molar proportion of acetate, numbers of fungi, abundance of Fibrobacter succinogenes, and methane yield, but positively correlated (r > 0.40; P < 0.05) with molar proportions of propionate and n-butyrate, numbers of methanogens, and abundance of Selenomonas ruminantium and Prevotella spp. Ruminal dissolved hydrogen was positively correlated (r = 0.93; P < 0.001) with Gibbs free energy changes of reactions producing greater acetate and hydrogen, but not correlated with those reactions producing more propionate without hydrogen. CONCLUSIONS: Changes in fermentation pathways from acetate toward propionate production and in microbiota from fibrolytic toward amylolytic species were closely associated with ruminal dissolved hydrogen in lactating dairy cows. An unresolved paradox was that greater dissolved hydrogen was associated with greater numbers of methanogens but with lower gaseous methane emissions.


Asunto(s)
Alimentación Animal/análisis , Dieta/veterinaria , Carbohidratos de la Dieta/administración & dosificación , Microbioma Gastrointestinal , Hidrógeno/metabolismo , Rumen/microbiología , Animales , Bovinos , Femenino , Fermentación , Fibrobacter/aislamiento & purificación , Fibrobacter/metabolismo , Lactancia , Metano/metabolismo , Modelos Teóricos , Prevotella/aislamiento & purificación , Prevotella/metabolismo , Selenomonas/aislamiento & purificación , Selenomonas/metabolismo
12.
J Theor Biol ; 393: 75-81, 2016 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-26780651

RESUMEN

Existing mathematical models to estimate methane production in the rumen are based on calculation of hydrogen balances without considering the presence of methanogens. In this study, a mechanistic model of methane production is proposed that depicts the interaction between hydrogen concentration and methanogens in the rumen. Analytical results show that it meets biological expectations, namely increased fractional passage rate leads to a greater growth rate of methanogens, and a greater steady state hydrogen concentration. This model provides a basis on which to develop a more comprehensive model of methane production in the rumen that includes thermodynamics and feed fermentation pathways.


Asunto(s)
Hidrógeno/metabolismo , Metano/metabolismo , Modelos Biológicos , Rumen/metabolismo , Animales
13.
Appl Environ Microbiol ; 81(3): 986-95, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25416771

RESUMEN

Sequencing and analyses of 16S rRNA gene amplicons were performed to estimate the composition of the rumen methanogen community in 252 samples from eight cohorts of sheep and cattle, separated into 16 different sample groups by diet, and to determine which methanogens are most prominent in the rumens of farmed New Zealand ruminants. Methanobacteriales (relative abundance ± standard deviation, 89.6% ± 9.8%) and Methanomassiliicoccales (10.4% ± 9.8%) were the two major orders and contributed 99.98% (±0.1%) to the rumen methanogen communities in the samples. Sequences from Methanobacteriales were almost entirely from only four different species (or clades of very closely related species). Each was detectable in at least 89% of the samples. These four species or clades were the Methanobrevibacter gottschalkii clade and Methanobrevibacter ruminantium clade with a mean abundance of 42.4% (±19.5% standard deviation) and 32.9% (±18.8%), respectively, and Methanosphaera sp. ISO3-F5 (8.2% ± 6.7%) and Methanosphaera sp. group5 (5.6% ± 5.7%). These four species or clades appeared to be primarily represented by only one or, in one case, two dominant sequence types per species or clade when the sequences were grouped into operational taxonomic units (OTUs) at 99% sequence identity. The mean relative abundance of Methanomassiliicoccales in the samples was relatively low but exceeded 40% in some of the treatment groups. Animal feed affected the apparent methanogen community structure of both orders, as evident from differences in relative abundances of the major OTUs in animals under different feeding regimens.


Asunto(s)
Archaea/clasificación , Archaea/genética , Biota , Metano/metabolismo , Rumen/microbiología , Alimentación Animal , Animales , Archaea/metabolismo , Bovinos , Análisis por Conglomerados , ADN de Archaea/química , ADN de Archaea/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Nueva Zelanda , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Ovinos
14.
Appl Environ Microbiol ; 81(21): 7470-83, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26276109

RESUMEN

Analysis of rumen microbial community structure based on small-subunit rRNA marker genes in metagenomic DNA samples provides important insights into the dominant taxa present in the rumen and allows assessment of community differences between individuals or in response to treatments applied to ruminants. However, natural animal-to-animal variation in rumen microbial community composition can limit the power of a study considerably, especially when only subtle differences are expected between treatment groups. Thus, trials with large numbers of animals may be necessary to overcome this variation. Because ruminants pass large amounts of rumen material to their oral cavities when they chew their cud, oral samples may contain good representations of the rumen microbiota and be useful in lieu of rumen samples to study rumen microbial communities. We compared bacterial, archaeal, and eukaryotic community structures in DNAs extracted from buccal swabs to those in DNAs from samples collected directly from the rumen by use of a stomach tube for sheep on four different diets. After bioinformatic depletion of potential oral taxa from libraries of samples collected via buccal swabs, bacterial communities showed significant clustering by diet (R = 0.37; analysis of similarity [ANOSIM]) rather than by sampling method (R = 0.07). Archaeal, ciliate protozoal, and anaerobic fungal communities also showed significant clustering by diet rather than by sampling method, even without adjustment for potentially orally associated microorganisms. These findings indicate that buccal swabs may in future allow quick and noninvasive sampling for analysis of rumen microbial communities in large numbers of ruminants.


Asunto(s)
Archaea/aislamiento & purificación , Bacterias/aislamiento & purificación , Biota , Eucariontes/aislamiento & purificación , Mucosa Bucal/microbiología , Rumen/microbiología , Animales , Archaea/clasificación , Bacterias/clasificación , Eucariontes/clasificación , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Ovinos
15.
Appl Environ Microbiol ; 81(7): 2433-44, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25616800

RESUMEN

The development of high-throughput methods, such as the construction of 18S rRNA gene clone or pyrosequencing libraries, has allowed evaluation of ciliate community composition in hundreds of samples from the rumen and other intestinal habitats. However, several genera of mammalian intestinal ciliates have been described based only on morphological features and, to date, have not been identified using molecular methods. Here, we isolated single cells of one of the smallest but widely distributed intestinal ciliates, Charonina ventriculi, and sequenced its 18S rRNA gene. We verified the sequence in a full-cycle rRNA approach using fluorescence in situ hybridization and thereby assigned an 18S rRNA gene sequence to this species previously known only by its morphology. Based on its full-length 18S rRNA gene sequence, Charonina ventriculi was positioned within the phylogeny of intestinal ciliates in the subclass Trichostomatia. The taxonomic framework derived from this phylogeny was used for taxonomic assignment of trichostome ciliate 18S rRNA gene sequence data stemming from high-throughput amplicon pyrosequencing of rumen-derived DNA samples. The 18S rRNA gene-based ciliate community structure was compared to that obtained from microscopic counts using the same samples. Both methods allowed identification of dominant members of the ciliate communities and classification of the rumen ciliate community into one of the types first described by Eadie in 1962. Notably, each method is associated with advantages and disadvantages. Microscopy is a highly accurate method for evaluation of total numbers or relative abundances of different ciliate genera in a sample, while 18S rRNA gene pyrosequencing represents a valuable alternative for comparison of ciliate community structure in a large number of samples from different animals or treatment groups.


Asunto(s)
Biota , Cilióforos/clasificación , Cilióforos/genética , Rumen/parasitología , Animales , Cilióforos/citología , Análisis por Conglomerados , ADN Protozoario/química , ADN Protozoario/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Microscopía , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 18S/genética , Análisis de Secuencia de ADN
16.
Can J Microbiol ; 61(6): 417-28, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25924182

RESUMEN

In this study, methanogen-specific coenzyme F420 autofluorescence and confocal laser scanning microscopy were used to identify rumen methanogens and define their spatial distribution in free-living, biofilm-, and protozoa-associated microenvironments. Fluorescence in situ hybridization (FISH) with temperature-controlled hybridization was used in an attempt to describe methanogen diversity. A heat pretreatment (65 °C, 1 h) was found to be a noninvasive method to increase probe access to methanogen RNA targets. Despite efforts to optimize FISH, 16S rRNA methanogen-specific probes, including Arch915, bound to some cells that lacked F420, possibly identifying uncharacterized Methanomassiliicoccales or reflecting nonspecific binding to other members of the rumen bacterial community. A probe targeting RNA from the methanogenesis-specific methyl coenzyme M reductase (mcr) gene was shown to detect cultured Methanosarcina cells with signal intensities comparable to those of 16S rRNA probes. However, the probe failed to hybridize with the majority of F420-emitting rumen methanogens, possibly because of differences in cell wall permeability among methanogen species. Methanogens were shown to integrate into microbial biofilms and to exist as ecto- and endosymbionts with rumen protozoa. Characterizing rumen methanogens and defining their spatial distribution may provide insight into mitigation strategies for ruminal methanogenesis.


Asunto(s)
Bacterias/aislamiento & purificación , Bacterias/metabolismo , Hibridación Fluorescente in Situ/métodos , Metano/metabolismo , Microscopía Confocal/métodos , Rumen/microbiología , Animales , Bacterias/clasificación , Bacterias/genética , Proteínas Bacterianas/genética , Bovinos , Datos de Secuencia Molecular , Oxidorreductasas/genética , Filogenia , ARN Bacteriano/genética , ARN Ribosómico 16S/genética
17.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38365243

RESUMEN

Ruminants are essential for global food security, but these are major sources of the greenhouse gas methane. Methane yield is controlled by the cycling of molecular hydrogen (H2), which is produced during carbohydrate fermentation and is consumed by methanogenic, acetogenic, and respiratory microorganisms. However, we lack a holistic understanding of the mediators and pathways of H2 metabolism and how this varies between ruminants with different methane-emitting phenotypes. Here, we used metagenomic, metatranscriptomic, metabolomics, and biochemical approaches to compare H2 cycling and reductant disposal pathways between low-methane-emitting Holstein and high-methane-emitting Jersey dairy cattle. The Holstein rumen microbiota had a greater capacity for reductant disposal via electron transfer for amino acid synthesis and propionate production, catalyzed by enzymes such as glutamate synthase and lactate dehydrogenase, and expressed uptake [NiFe]-hydrogenases to use H2 to support sulfate and nitrate respiration, leading to enhanced coupling of H2 cycling with less expelled methane. The Jersey rumen microbiome had a greater proportion of reductant disposal via H2 production catalyzed by fermentative hydrogenases encoded by Clostridia, with H2 mainly taken up through methanogenesis via methanogenic [NiFe]-hydrogenases and acetogenesis via [FeFe]-hydrogenases, resulting in enhanced methane and acetate production. Such enhancement of electron incorporation for metabolite synthesis with reduced methanogenesis was further supported by two in vitro measurements of microbiome activities, metabolites, and public global microbiome data of low- and high-methane-emitting beef cattle and sheep. Overall, this study highlights the importance of promoting alternative H2 consumption and reductant disposal pathways for synthesizing host-beneficial metabolites and reducing methane production in ruminants.


Asunto(s)
Euryarchaeota , Sustancias Reductoras , Bovinos , Ovinos , Animales , Sustancias Reductoras/metabolismo , Metano/metabolismo , Hidrógeno/metabolismo , Rumiantes/metabolismo , Fermentación , Euryarchaeota/metabolismo , Rumen/metabolismo
18.
Microbiol Resour Announc ; 13(4): e0004324, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38426731

RESUMEN

Methanosphaera spp. are methylotrophic methanogenic archaea and members of the order Methanobacteriales with few cultured representatives. Methanosphaera sp. ISO3-F5 was isolated from sheep rumen contents in New Zealand. Here, we report its complete genome, consisting of a large chromosome and a megaplasmid (GenBank accession numbers CP118753 and CP118754, respectively).

19.
Sci Rep ; 13(1): 21305, 2023 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-38042941

RESUMEN

Methane (CH4) emissions from ruminants are of a significant environmental concern, necessitating accurate prediction for emission inventories. Existing models rely solely on dietary and host animal-related data, ignoring the predicting power of rumen microbiota, the source of CH4. To address this limitation, we developed novel CH4 prediction models incorporating rumen microbes as predictors, alongside animal- and feed-related predictors using four statistical/machine learning (ML) methods. These include random forest combined with boosting (RF-B), least absolute shrinkage and selection operator (LASSO), generalized linear mixed model with LASSO (glmmLasso), and smoothly clipped absolute deviation (SCAD) implemented on linear mixed models. With a sheep dataset (218 observations) of both animal data and rumen microbiota data (relative sequence abundance of 330 genera of rumen bacteria, archaea, protozoa, and fungi), we developed linear mixed models to predict CH4 production (g CH4/animal·d, ANIM-B models) and CH4 yield (g CH4/kg of dry matter intake, DMI-B models). We also developed models solely based on animal-related data. Prediction performance was evaluated 200 times with random data splits, while fitting performance was assessed without data splitting. The inclusion of microbial predictors improved the models, as indicated by decreased root mean square prediction error (RMSPE) and mean absolute error (MAE), and increased Lin's concordance correlation coefficient (CCC). Both glmmLasso and SCAD reduced the Akaike information criterion (AIC) and Bayesian information criterion (BIC) for both the ANIM-B and the DMI-B models, while the other two ML methods had mixed outcomes. By balancing prediction performance and fitting performance, we obtained one ANIM-B model (containing 10 genera of bacteria and 3 animal data) fitted using glmmLasso and one DMI-B model (5 genera of bacteria and 1 animal datum) fitted using SCAD. This study highlights the importance of incorporating rumen microbiota data in CH4 prediction models to enhance accuracy and robustness. Additionally, ML methods facilitate the selection of microbial predictors from high-dimensional metataxonomic data of the rumen microbiota without overfitting. Moreover, the identified microbial predictors can serve as biomarkers of CH4 emissions from sheep, providing valuable insights for future research and mitigation strategies.


Asunto(s)
Metano , Rumen , Ovinos , Animales , Femenino , Teorema de Bayes , Rumiantes , Dieta/veterinaria , Bacterias/genética , Alimentación Animal/análisis , Lactancia
20.
Animals (Basel) ; 13(24)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38136895

RESUMEN

Increasing the efficiency of rumen fermentation is one of the main ways to maximize the production of ruminants. It is therefore important to understand the ruminal microbiome, as well as environmental influences on that community. However, there are no studies that describe the ruminal microbiota in buffaloes in the Amazon. The objective of this study was to characterize the rumen microbiome of the water buffalo (Bubalus bubalis) in the eastern Amazon in the dry and rainy seasons in three grazing ecosystems: Baixo Amazonas (BA), Continente do Pará (CP), Ilha do Marajó (IM), and in a confinement system: Tomé-Açu (TA). Seventy-one crossbred male buffaloes (Murrah × Mediterranean) were used, aged between 24 and 36 months, with an average weight of 432 kg in the rainy season and 409 kg in the dry season, and fed on native or cultivated pastures. In the confinement system, the feed consisted of sorghum silage, soybean meal, wet sorghum premix, and commercial feed. Samples of the diet from each ecosystem were collected for bromatological analysis. The collections of ruminal content were carried out in slaughterhouses, with the rumen completely emptied and homogenized, the solid and liquid fractions separated, and the ruminal pH measured. DNA was extracted from the rumen samples, then sequenced using Restriction Enzyme Reduced Representation Sequencing. The taxonomic composition was largely similar between ecosystems. All 61 genera in the reference database were recognized, including members of the domains Bacteria and Archaea. The abundance of 23 bacterial genera differed significantly (p < 0.01) between the Tomé-Açu confinement and other ecosystems. Bacillus, Ruminococcus, and Bacteroides had lower abundance in samples from the Tomé-Açu system. Among the Archaea, the genus Methanomicrobium was less abundant in Tomé-Açu, while Methanosarcina was more abundant. There was a difference caused by all evaluated factors, but the diet (available or offered) was what most influenced the ruminal microbiota.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA