Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neurotrauma Rep ; 5(1): 61-73, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38288298

RESUMEN

Chronic sleep/wake disturbances (SWDs) are strongly associated with traumatic brain injury (TBI) in patients and are being increasingly recognized. However, the underlying mechanisms are largely understudied and there is an urgent need for animal models of lifelong SWDs. The objective of this study was to develop a chronic TBI rodent model and investigate the lifelong chronic effect of TBI on sleep/wake behavior. We performed repetitive midline fluid percussion injury (rmFPI) in 4-month-old mice and monitored their sleep/wake behavior using the non-invasive PiezoSleep system. Sleep/wake states were recorded before injury (baseline) and then monthly thereafter. We found that TBI mice displayed a significant decrease in sleep duration in both the light and dark phases, beginning at 3 months post-TBI and continuing throughout the study. Consistent with the sleep phenotype, these TBI mice showed circadian locomotor activity phenotypes and exhibited reduced anxiety-like behavior. TBI mice also gained less weight, and had less lean mass and total body water content, compared to sham controls. Further, TBI mice showed extensive brain tissue loss and increased glial fibrillary acidic protein and ionized calcium-binding adaptor molecule 1 levels in the hypothalamus and vicinity of the injury, indicative of chronic neuropathology. In summary, our study identified a critical time window of TBI pathology and associated circadian and sleep/wake phenotypes. Future studies should leverage this mouse model to investigate the molecular mechanisms underlying the chronic sleep/wake phenotypes post-TBI early in life.

2.
J Neurosci ; 32(21): 7137-45, 2012 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-22623658

RESUMEN

Tau is a microtubule (MT)-stabilizing protein that is altered in Alzheimer's disease (AD) and other tauopathies. It is hypothesized that the hyperphosphorylated, conformationally altered, and multimeric forms of tau lead to a disruption of MT stability; however, direct evidence is lacking in vivo. In this study, an in vivo stable isotope-mass spectrometric technique was used to measure the turnover, or dynamicity, of MTs in brains of living animals. We demonstrated an age-dependent increase in MT dynamics in two different tau transgenic mouse models, 3xTg and rTg4510. MT hyperdynamicity was dependent on tau expression, since a reduction of transgene expression with doxycycline reversed the MT changes. Treatment of rTg4510 mice with the epothilone, BMS-241027, also restored MT dynamics to baseline levels. In addition, MT stabilization with BMS-241027 had beneficial effects on Morris water maze deficits, tau pathology, and neurodegeneration. Interestingly, pathological and functional benefits of BMS-241027 were observed at doses that only partially reversed MT hyperdynamicity. Together, these data suggest that tau-mediated loss of MT stability may contribute to disease progression and that very low doses of BMS-241027 may be useful in the treatment of AD and other tauopathies.


Asunto(s)
Trastornos del Conocimiento/tratamiento farmacológico , Epotilonas/uso terapéutico , Microtúbulos/patología , Degeneración Nerviosa/tratamiento farmacológico , Tauopatías/tratamiento farmacológico , Moduladores de Tubulina/uso terapéutico , Proteínas tau/fisiología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Trastornos del Conocimiento/complicaciones , Trastornos del Conocimiento/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Doxiciclina/farmacología , Evaluación Preclínica de Medicamentos/métodos , Evaluación Preclínica de Medicamentos/psicología , Epotilonas/farmacología , Femenino , Hipocampo/efectos de los fármacos , Hipocampo/patología , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microtúbulos/efectos de los fármacos , Tauopatías/complicaciones , Tauopatías/genética , Tauopatías/patología , Tauopatías/psicología , Moduladores de Tubulina/farmacología , Proteínas tau/antagonistas & inhibidores , Proteínas tau/biosíntesis , Proteínas tau/genética
3.
bioRxiv ; 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38014315

RESUMEN

Chronic sleep/wake disturbances are strongly associated with traumatic brain injury (TBI) in patients and are being increasingly recognized. However, the underlying mechanisms are largely understudied and there is an urgent need for animal models of lifelong sleep/wake disturbances. The objective of this study was to develop a chronic TBI rodent model and investigate the lifelong chronic effect of TBI on sleep/wake behavior. We performed repetitive midline fluid percussion injury (rmFPI) in four months old mice and monitored their sleep/wake behavior using the non-invasive PiezoSleep system. The sleep/wake states were recorded before injury (baseline) and then monthly thereafter. We found that TBI mice displayed a significant decrease in sleep duration in both the light and dark phases, beginning at three months post-TBI and continuing throughout the study. Consistent with the sleep phenotype, these TBI mice showed circadian locomotor activity phenotypes and exhibited reduced anxiety-like behavior. TBI mice also gained less weight, and had less lean mass and total body water content, compared to sham controls. Furthermore, TBI mice showed extensive brain tissue loss and increased GFAP and IBA1 levels in the hypothalamus and the vicinity of the injury, indicative of chronic neuropathology. In summary, our study identified a critical time window of TBI pathology and associated circadian and sleep/wake phenotypes. Future studies should leverage this mouse model to investigate the molecular mechanisms underlying the chronic sleep/wake phenotypes following TBI early in life.

4.
Behav Genet ; 37(1): 79-100, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17072762

RESUMEN

Within the past decade, our understanding of the pathogenic mechanisms in Alzheimer's disease (AD) has dramatically advanced because of the development of transgenic mouse models that recapitulate the key pathological and behavioral phenotypes of the disease. These mouse models have allowed investigators to test detailed questions about how pathology develops and to evaluate potential therapeutic approaches that could slow down the development of this disease. In this review, we discuss the status of transgenic mouse models and review the complex relationship between pathology and behavior in the development of neuropathological syndromes in AD.


Asunto(s)
Enfermedad de Alzheimer/genética , Modelos Animales de Enfermedad , Trastornos de la Memoria/genética , Ratones Transgénicos , Ovillos Neurofibrilares/metabolismo , Placa Amiloide/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Animales , Trastornos del Conocimiento/metabolismo , Humanos , Trastornos de la Memoria/patología , Ratones , Ovillos Neurofibrilares/patología , Placa Amiloide/metabolismo , Placa Amiloide/patología , Proteínas tau/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA