Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Cancer ; 22(1): 1045, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36199072

RESUMEN

BACKGROUND: Prediction of patient survival from tumor molecular '-omics' data is a key step toward personalized medicine. Cox models performed on RNA profiling datasets are popular for clinical outcome predictions. But these models are applied in the context of "high dimension", as the number p of covariates (gene expressions) greatly exceeds the number n of patients and e of events. Thus, pre-screening together with penalization methods are widely used for dimensional reduction. METHODS: In the present paper, (i) we benchmark the performance of the lasso penalization and three variants (i.e., ridge, elastic net, adaptive elastic net) on 16 cancers from TCGA after pre-screening, (ii) we propose a bi-dimensional pre-screening procedure based on both gene variability and p-values from single variable Cox models to predict survival, and (iii) we compare our results with iterative sure independence screening (ISIS). RESULTS: First, we show that integration of mRNA-seq data with clinical data improves predictions over clinical data alone. Second, our bi-dimensional pre-screening procedure can only improve, in moderation, the C-index and/or the integrated Brier score, while excluding irrelevant genes for prediction. We demonstrate that the different penalization methods reached comparable prediction performances, with slight differences among datasets. Finally, we provide advice in the case of multi-omics data integration. CONCLUSIONS: Tumor profiles convey more prognostic information than clinical variables such as stage for many cancer subtypes. Lasso and Ridge penalizations perform similarly than Elastic Net penalizations for Cox models in high-dimension. Pre-screening of the top 200 genes in term of single variable Cox model p-values is a practical way to reduce dimension, which may be particularly useful when integrating multi-omics.


Asunto(s)
Neoplasias , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Pronóstico , Modelos de Riesgos Proporcionales , ARN , ARN Mensajero
2.
Cancers (Basel) ; 15(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37345040

RESUMEN

Clear-cell renal cell carcinoma (ccRCC) accounts for 75% of kidney cancers. Due to the high recurrence rate and treatment options that come with high costs and potential side effects, a correct prognosis of patient survival is essential for the successful and effective treatment of patients. Novel biomarkers could play an important role in the assessment of the overall survival of patients. COL7A1 encodes for collagen type VII, a constituent of the basal membrane. COL7A1 is associated with survival in many cancers; however, the prognostic value of COL7A1 expression as a standalone biomarker in ccRCC has not been investigated. With five publicly available independent cohorts, we used Kaplan-Meier curves and the Cox proportional hazards model to investigate the prognostic value of COL7A1, as well as gene set enrichment analysis to investigate genes co-expressed with COL7A1. COL7A1 expression stratifies patients in terms of aggressiveness, where the 5-year survival probability of each of the four groups was 72.4%, 59.1%, 34.15%, and 8.6% in order of increasing expression. Additionally, COL7A1 expression was successfully used to further divide patients of each stage and histological grade into groups of high and low risk. Similar results were obtained in independent cohorts. In vitro knockdown of COL7A1 expression significantly affected ccRCC cells' ability to migrate, leading to the hypothesis that COL7A1 may have a role in cancer aggressiveness. To conclude, we identified COL7A1 as a new prognosis marker that can stratify ccRCC patients.

3.
Genes (Basel) ; 13(12)2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36553544

RESUMEN

(1) Background: tumor profiling enables patient survival prediction. The two essential parameters to be calibrated when designing a study based on tumor profiles from a cohort are the sequencing depth of RNA-seq technology and the number of patients. This calibration is carried out under cost constraints, and a compromise has to be found. In the context of survival data, the goal of this work is to benchmark the impact of the number of patients and of the sequencing depth of miRNA-seq and mRNA-seq on the predictive capabilities for both the Cox model with elastic net penalty and random survival forest. (2) Results: we first show that the Cox model and random survival forest provide comparable prediction capabilities, with significant differences for some cancers. Second, we demonstrate that miRNA and/or mRNA data improve prediction over clinical data alone. mRNA-seq data leads to slightly better prediction than miRNA-seq, with the notable exception of lung adenocarcinoma for which the tumor miRNA profile shows higher predictive power. Third, we demonstrate that the sequencing depth of RNA-seq data can be reduced for most of the investigated cancers without degrading the prediction abilities, allowing the creation of independent validation sets at a lower cost. Finally, we show that the number of patients in the training dataset can be reduced for the Cox model and random survival forest, allowing the use of different models on different patient subgroups.


Asunto(s)
Neoplasias Pulmonares , MicroARNs , Humanos , Modelos de Riesgos Proporcionales , Bosques Aleatorios , Perfilación de la Expresión Génica , MicroARNs/genética , Neoplasias Pulmonares/genética , ARN Mensajero/genética
4.
Biotechnol J ; 13(12): e1800103, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30457704

RESUMEN

With the increased availability of survival datasets, that comprise both molecular information (e.g., gene expression), and clinical information (e.g., patient survival), numerous genes are proposed as prognostic biomarkers. Despite efforts and money invested, very few of these biomarkers have been clinically validated and are used routinely. A high false discovery rate is assumed to be largely responsible for this, in particular as the number of tested genes is extremely high relative to the number of patients followed. Here, after describing the historical methodologies on which recent developments have often been based, this review describes studies that have been performed in the last few years. The concepts will be illustrated for a renal cancer dataset, and the corresponding scripts are provided (Supporting Information). These new developments belong to three main fields of applications. First, variable selection concerns various improvements to lasso penalization. Second, accurate definition of p-values and control of the false discovery rate have also been the subject of many studies. Third, the incorporation of biological knowledge, often through the form of networks or pathways, can be used as an a priori and/or to reduce dimensionality. These new and promising developments deserve benchmarking by independent groups not involved in their development, with various independent datasets. Further work on the methodologies is also still required.


Asunto(s)
Biomarcadores de Tumor/genética , Biología Computacional , Neoplasias Renales/diagnóstico , Bases de Datos Factuales , Supervivencia sin Enfermedad , Humanos , Neoplasias Renales/genética , Neoplasias Renales/terapia , Modelos Biológicos , Pronóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA