Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
New Phytol ; 239(3): 839-851, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37282715

RESUMEN

While traditionally considered important mainly in hypoxic roots during flooding, upregulation of fermentation pathways in plants has recently been described as an evolutionarily conserved drought survival strategy, with acetate signaling mediating reprograming of transcription and cellular carbon and energy metabolism from roots to leaves. The amount of acetate produced directly correlates with survival through potential mechanisms including defense gene activation, biosynthesis of primary and secondary metabolites, and aerobic respiration. Here, we review root ethanolic fermentation responses to hypoxia during saturated soil conditions and summarize studies highlighting acetate fermentation under aerobic conditions coupled with respiration during growth and drought responses. Recent work is discussed demonstrating long-distance transport of acetate via the transpiration stream as a respiratory substrate. While maintenance and growth respiration are often modeled separately in terrestrial models, here we propose the concept of 'Defense Respiration' fueled by acetate fermentation in which upregulation of acetate fermentation contributes acetate substrate for alternative energy production via aerobic respiration, biosynthesis of primary and secondary metabolites, and the acetylation of proteins involved in defense gene regulation. Finally, we highlight new frontiers in leaf-atmosphere emission measurements as a potential way to study acetate fermentation responses of individual leaves, branches, ecosystems, and regions.


Asunto(s)
Acetatos , Ecosistema , Fermentación , Metabolismo Energético , Raíces de Plantas/metabolismo
2.
Plant Cell Environ ; 45(12): 3429-3444, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36222152

RESUMEN

Growth suppression and defence signalling are simultaneous strategies that plants invoke to respond to abiotic stress. Here, we show that the drought stress response of poplar trees (Populus trichocarpa) is initiated by a suppression in cell wall derived methanol (MeOH) emissions and activation of acetic acid (AA) fermentation defences. Temperature sensitive emissions dominated by MeOH (AA/MeOH <30%) were observed from physiologically active leaves, branches, detached stems, leaf cell wall isolations and whole ecosystems. In contrast, drought treatment resulted in a suppression of MeOH emissions and strong enhancement in AA emissions together with volatiles acetaldehyde, ethanol, and acetone. These drought-induced changes coincided with a reduction in stomatal conductance, photosynthesis, transpiration, and leaf water potential. The strong enhancement in AA/MeOH emission ratios during drought (400%-3500%) was associated with an increase in acetate content of whole leaf cell walls, which became significantly 13 C2 -labelled following the delivery of 13 C2 -acetate via the transpiration stream. The results are consistent with both enzymatic and nonenzymatic MeOH and AA production at high temperature in hydrated tissues associated with accelerated primary cell wall growth processes, which are downregulated during drought. While the metabolic source(s) require further investigation, the observations are consistent with drought-induced activation of aerobic fermentation driving high rates of foliar AA emissions and enhancements in leaf cell wall O-acetylation. We suggest that atmospheric AA/MeOH emission ratios could be useful as a highly sensitive signal in studies investigating environmental and biological factors influencing growth-defence trade-offs in plants and ecosystems.


Asunto(s)
Ésteres , Populus , Ésteres/metabolismo , Ecosistema , Estrés Fisiológico , Populus/metabolismo , Sequías , Hojas de la Planta/metabolismo , Metanol/metabolismo , Pared Celular/metabolismo , Agua/metabolismo , Ácido Acético/metabolismo
3.
Proc Natl Acad Sci U S A ; 116(39): 19318-19323, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31501347

RESUMEN

The emissions, deposition, and chemistry of volatile organic compounds (VOCs) are thought to be influenced by underlying landscape heterogeneity at intermediate horizontal scales of several hundred meters across different forest subtypes within a tropical forest. Quantitative observations and scientific understanding at these scales, however, remain lacking, in large part due to a historical absence of canopy access and suitable observational approaches. Herein, horizontal heterogeneity in VOC concentrations in the near-canopy atmosphere was examined by sampling from an unmanned aerial vehicle (UAV) flown horizontally several hundred meters over the plateau and slope forests in central Amazonia during the morning and early afternoon periods of the wet season of 2018. Unlike terpene concentrations, the isoprene concentrations in the near-canopy atmosphere over the plateau forest were 60% greater than those over the slope forest. A gradient transport model constrained by the data suggests that isoprene emissions differed by 220 to 330% from these forest subtypes, which is in contrast to a 0% difference implemented in most present-day biosphere emissions models (i.e., homogeneous emissions). Quantifying VOC concentrations, emissions, and other processes at intermediate horizontal scales is essential for understanding the ecological and Earth system roles of VOCs and representing them in climate and air quality models.


Asunto(s)
Atmósfera/química , Butadienos/análisis , Bosques , Hemiterpenos/análisis , Compuestos Orgánicos Volátiles/análisis , Brasil , Estaciones del Año , Árboles/clasificación , Árboles/fisiología
4.
Glob Chang Biol ; 27(24): 6454-6466, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34469040

RESUMEN

Increasing severity and frequency of drought is predicted for large portions of the terrestrial biosphere, with major impacts already documented in wet tropical forests. Using a 4-year rainfall exclusion experiment in the Daintree Rainforest in northeast Australia, we examined canopy tree responses to reduced precipitation and soil water availability by quantifying seasonal changes in plant hydraulic and carbon traits for 11 tree species between control and drought treatments. Even with reduced soil volumetric water content in the upper 1 m of soil in the drought treatment, we found no significant difference between treatments for predawn and midday leaf water potential, photosynthesis, stomatal conductance, foliar stable carbon isotope composition, leaf mass per area, turgor loss point, xylem vessel anatomy, or leaf and stem nonstructural carbohydrates. While empirical measurements of aboveground traits revealed homeostatic maintenance of plant water status and traits in response to reduced soil moisture, modeled belowground dynamics revealed that trees in the drought treatment shifted the depth from which water was acquired to deeper soil layers. These findings reveal that belowground acclimation of tree water uptake depth may buffer tropical rainforests from more severe droughts that may arise in future with climate change.


Asunto(s)
Árboles , Agua , Carbono , Sequías , Bosques , Hojas de la Planta , Bosque Lluvioso
5.
Glob Chang Biol ; 26(10): 5928-5941, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32525272

RESUMEN

Tropical forests absorb large amounts of atmospheric CO2 through photosynthesis, but high surface temperatures suppress this absorption while promoting isoprene emissions. While mechanistic isoprene emission models predict a tight coupling to photosynthetic electron transport (ETR) as a function of temperature, direct field observations of this phenomenon are lacking in the tropics and are necessary to assess the impact of a warming climate on global isoprene emissions. Here we demonstrate that in the early successional species Vismia guianensis in the central Amazon, ETR rates increased with temperature in concert with isoprene emissions, even as stomatal conductance (gs ) and net photosynthetic carbon fixation (Pn ) declined. We observed the highest temperatures of continually increasing isoprene emissions yet reported (50°C). While Pn showed an optimum value of 32.6 ± 0.4°C, isoprene emissions, ETR, and the oxidation state of PSII reaction centers (qL ) increased with leaf temperature with strong linear correlations for ETR (Æ¿ = 0.98) and qL (Æ¿ = 0.99) with leaf isoprene emissions. In contrast, other photoprotective mechanisms, such as non-photochemical quenching, were not activated at elevated temperatures. Inhibition of isoprenoid biosynthesis repressed Pn at high temperatures through a mechanism that was independent of stomatal closure. While extreme warming will decrease gs and Pn in tropical species, our observations support a thermal tolerance mechanism where the maintenance of high photosynthetic capacity under extreme warming is assisted by the simultaneous stimulation of ETR and metabolic pathways that consume the direct products of ETR including photorespiration and the biosynthesis of thermoprotective isoprenoids. Our results confirm that models which link isoprene emissions to the rate of ETR hold true in tropical species and provide necessary "ground-truthing" for simulations of the large predicted increases in tropical isoprene emissions with climate warming.


Asunto(s)
Butadienos , Hemiterpenos , Dióxido de Carbono , Transporte de Electrón , Fotosíntesis , Hojas de la Planta
6.
Oecologia ; 191(3): 519-530, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31541317

RESUMEN

Transpiration in humid tropical forests modulates the global water cycle and is a key driver of climate regulation. Yet, our understanding of how tropical trees regulate sap flux in response to climate variability remains elusive. With a progressively warming climate, atmospheric evaporative demand [i.e., vapor pressure deficit (VPD)] will be increasingly important for plant functioning, becoming the major control of plant water use in the twenty-first century. Using measurements in 34 tree species at seven sites across a precipitation gradient in the neotropics, we determined how the maximum sap flux velocity (vmax) and the VPD threshold at which vmax is reached (VPDmax) vary with precipitation regime [mean annual precipitation (MAP); seasonal drought intensity (PDRY)] and two functional traits related to foliar and wood economics spectra [leaf mass per area (LMA); wood specific gravity (WSG)]. We show that, even though vmax is highly variable within sites, it follows a negative trend in response to increasing MAP and PDRY across sites. LMA and WSG exerted little effect on vmax and VPDmax, suggesting that these widely used functional traits provide limited explanatory power of dynamic plant responses to environmental variation within hyper-diverse forests. This study demonstrates that long-term precipitation plays an important role in the sap flux response of humid tropical forests to VPD. Our findings suggest that under higher evaporative demand, trees growing in wetter environments in humid tropical regions may be subjected to reduced water exchange with the atmosphere relative to trees growing in drier climates.


Asunto(s)
Transpiración de Plantas , Árboles , Sequías , Bosques , Presión de Vapor , Agua
7.
Int J Mol Sci ; 19(7)2018 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-30002274

RESUMEN

Warming surface temperatures and increasing frequency and duration of widespread droughts threaten the health of natural forests and agricultural crops. High temperatures (HT) and intense droughts can lead to the excessive plant water loss and the accumulation of reactive oxygen species (ROS) resulting in extensive physical and oxidative damage to sensitive plant components including photosynthetic membranes. ROS signaling is tightly integrated with signaling mechanisms of the potent phytohormone abscisic acid (ABA), which stimulates stomatal closure leading to a reduction in transpiration and net photosynthesis, alters hydraulic conductivities, and activates defense gene expression including antioxidant systems. While generally assumed to be produced in roots and transported to shoots following drought stress, recent evidence suggests that a large fraction of plant ABA is produced in leaves via the isoprenoid pathway. Thus, through stomatal regulation and stress signaling which alters water and carbon fluxes, we highlight the fact that ABA lies at the heart of the Carbon-Water-ROS Nexus of plant response to HT and drought stress. We discuss the current state of knowledge of ABA biosynthesis, transport, and degradation and the role of ABA and other isoprenoids in the oxidative stress response. We discuss potential variations in ABA production and stomatal sensitivity among different plant functional types including isohydric/anisohydric and pioneer/climax tree species. We describe experiments that would demonstrate the possibility of a direct energetic and carbon link between leaf ABA biosynthesis and photosynthesis, and discuss the potential for a positive feedback between leaf warming and enhanced ABA production together with reduced stomatal conductance and transpiration. Finally, we propose a new modeling framework to capture these interactions. We conclude by discussing the importance of ABA in diverse tropical ecosystems through increases in the thermotolerance of photosynthesis to drought and heat stress, and the global importance of these mechanisms to carbon and water cycling under climate change scenarios.


Asunto(s)
Ácido Abscísico/metabolismo , Bosques , Modelos Biológicos , Estomas de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Clima Tropical
8.
Plant Cell Environ ; 40(3): 441-452, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27943309

RESUMEN

Tropical forests absorb large amounts of atmospheric CO2 through photosynthesis but elevated temperatures suppress this absorption and promote monoterpene emissions. Using 13 CO2 labeling, here we show that monoterpene emissions from tropical leaves derive from recent photosynthesis and demonstrate distinct temperature optima for five groups (Groups 1-5), potentially corresponding to different enzymatic temperature-dependent reaction mechanisms within ß-ocimene synthases. As diurnal and seasonal leaf temperatures increased during the Amazonian 2015 El Niño event, leaf and landscape monoterpene emissions showed strong linear enrichments of ß-ocimenes (+4.4% °C-1 ) at the expense of other monoterpene isomers. The observed inverse temperature response of α-pinene (-0.8% °C-1 ), typically assumed to be the dominant monoterpene with moderate reactivity, was not accurately simulated by current global emission models. Given that ß-ocimenes are highly reactive with respect to both atmospheric and biological oxidants, the results suggest that highly reactive ß-ocimenes may play important roles in the thermotolerance of photosynthesis by functioning as effective antioxidants within plants and as efficient atmospheric precursors of secondary organic aerosols. Thus, monoterpene composition may represent a new sensitive 'thermometer' of leaf oxidative stress and atmospheric reactivity, and therefore a new tool in future studies of warming impacts on tropical biosphere-atmosphere carbon-cycle feedbacks.


Asunto(s)
Atmósfera , Cambio Climático , Bosques , Monoterpenos/análisis , Temperatura , Clima Tropical , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Isótopos de Carbono , Ritmo Circadiano/fisiología , El Niño Oscilación del Sur , Hojas de la Planta/fisiología , Estaciones del Año , Compuestos Orgánicos Volátiles/metabolismo
9.
Int J Mol Sci ; 18(10)2017 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-28946627

RESUMEN

C1 metabolism in plants is known to be involved in photorespiration, nitrogen and amino acid metabolism, as well as methylation and biosynthesis of metabolites and biopolymers. Although the flux of carbon through the C1 pathway is thought to be large, its intermediates are difficult to measure and relatively little is known about this potentially ubiquitous pathway. In this study, we evaluated the C1 pathway and its integration with the central metabolism using aqueous solutions of 13C-labeled C1 and C2 intermediates delivered to branches of the tropical species Inga edulis via the transpiration stream. Delivery of [13C]methanol and [13C]formaldehyde rapidly stimulated leaf emissions of [13C]methanol, [13C]formaldehyde, [13C]formic acid, and 13CO2, confirming the existence of the C1 pathway and rapid interconversion between methanol and formaldehyde. However, while [13C]formate solutions stimulated emissions of 13CO2, emissions of [13C]methanol or [13C]formaldehyde were not detected, suggesting that once oxidation to formate occurs it is rapidly oxidized to CO2 within chloroplasts. 13C-labeling of isoprene, a known photosynthetic product, was linearly related to 13CO2 across C1 and C2 ([13C2]acetate and [2-13C]glycine) substrates, consistent with reassimilation of C1, respiratory, and photorespiratory CO2. Moreover, [13C]methanol and [13C]formaldehyde induced a quantitative labeling of both carbon atoms of acetic acid emissions, possibly through the rapid turnover of the chloroplastic acetyl-CoA pool via glycolate oxidation. The results support a role of the C1 pathway to provide an alternative carbon source for glycine methylation in photorespiration, enhance CO2 concentrations within chloroplasts, and produce key C2 intermediates (e.g., acetyl-CoA) central to anabolic and catabolic metabolism.


Asunto(s)
Carbono/metabolismo , Redes y Vías Metabólicas , Árboles/metabolismo , Butadienos/metabolismo , Carbono/química , Isótopos de Carbono , Formaldehído/química , Formaldehído/metabolismo , Formiatos/química , Formiatos/metabolismo , Hemiterpenos/metabolismo , Marcaje Isotópico , Metanol/química , Metanol/metabolismo , Pentanos/metabolismo , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/metabolismo
10.
Plant Physiol ; 166(4): 2051-64, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25318937

RESUMEN

The volatile gas isoprene is emitted in teragrams per annum quantities from the terrestrial biosphere and exerts a large effect on atmospheric chemistry. Isoprene is made primarily from recently fixed photosynthate; however, alternate carbon sources play an important role, particularly when photosynthate is limiting. We examined the relative contribution of these alternate carbon sources under changes in light and temperature, the two environmental conditions that have the strongest influence over isoprene emission. Using a novel real-time analytical approach that allowed us to examine dynamic changes in carbon sources, we observed that relative contributions do not change as a function of light intensity. We found that the classical uncoupling of isoprene emission from net photosynthesis at elevated leaf temperatures is associated with an increased contribution of alternate carbon. We also observed a rapid compensatory response where alternate carbon sources compensated for transient decreases in recently fixed carbon during thermal ramping, thereby maintaining overall increases in isoprene production rates at high temperatures. Photorespiration is known to contribute to the decline in net photosynthesis at high leaf temperatures. A reduction in the temperature at which the contribution of alternate carbon sources increased was observed under photorespiratory conditions, while photosynthetic conditions increased this temperature. Feeding [2-(13)C]glycine (a photorespiratory intermediate) stimulated emissions of [(13)C1-5]isoprene and (13)CO2, supporting the possibility that photorespiration can provide an alternate source of carbon for isoprene synthesis. Our observations have important implications for establishing improved mechanistic predictions of isoprene emissions and primary carbon metabolism, particularly under the predicted increases in future global temperatures.


Asunto(s)
Butadienos/metabolismo , Carbono/metabolismo , Hemiterpenos/metabolismo , Pentanos/metabolismo , Terpenos/metabolismo , Árboles/fisiología , Dióxido de Carbono/metabolismo , Isótopos de Carbono/análisis , Ambiente , Calor , Luz , Fotosíntesis , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Temperatura , Árboles/efectos de la radiación
11.
Plant Cell Environ ; 37(8): 1790-809, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24635661

RESUMEN

Biogenic volatile organic compound (BVOC) emissions are widely modelled as inputs to atmospheric chemistry simulations. However, BVOC may interact with cellular structures and neighbouring leaves in a complex manner during volatile diffusion from the sites of release to leaf boundary layer and during turbulent transport to the atmospheric boundary layer. Furthermore, recent observations demonstrate that the BVOC emissions are bidirectional, and uptake and deposition of BVOC and their oxidation products are the rule rather than the exception. This review summarizes current knowledge of within-leaf reactions of synthesized volatiles with reactive oxygen species (ROS), uptake, deposition and storage of volatiles, and their oxidation products as driven by adsorption on leaf surface and solubilization and enzymatic detoxification inside leaves. The available evidence indicates that because of the reactions with ROS and enzymatic metabolism, the BVOC gross production rates are much larger than previously thought. The degree to which volatiles react within leaves and can be potentially taken up by vegetation depends upon compound reactivity, physicochemical characteristics, as well as upon their participation in leaf metabolism. We argue that future models should be based upon the concept of bidirectional BVOC exchange and consider modification of BVOC sink/source strengths by within-leaf metabolism and storage.


Asunto(s)
Hojas de la Planta/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Atmósfera/química , Ecosistema , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo
12.
Plant Cell Environ ; 37(2): 414-24, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23862653

RESUMEN

Acetylation of plant metabolites fundamentally changes their volatility, solubility and activity as semiochemicals. Here we present a new technique termed dynamic (13) C-pulse chasing to track the fate of C1-3 carbon atoms of pyruvate into the biosynthesis and emission of methyl acetate (MA) and CO2 . (13) C-labelling of MA and CO2 branch emissions respond within minutes to changes in (13) C-positionally labelled pyruvate solutions fed through the transpiration stream. Strong (13) C-labelling of MA emissions occurred only under pyruvate-2-(13) C and pyruvate-2,3-(13) C feeding, but not pyruvate-1-(13) C feeding. In contrast, strong (13) CO2 emissions were only observed under pyruvate-1-(13) C feeding. These results demonstrate that MA (and other volatile and non-volatile metabolites) derive from the C2,3 atoms of pyruvate while the C1 atom undergoes decarboxylation. The latter is a non-mitochondrial source of CO2 in the light generally not considered in studies of CO2 sources and sinks. Within a tropical rainforest mesocosm, we also observed atmospheric concentrations of MA up to 0.6 ppbv that tracked light and temperature conditions. Moreover, signals partially attributed to MA were observed in ambient air within and above a tropical rainforest in the Amazon. Our study highlights the potential importance of acetyl coenzyme A (CoA) biosynthesis as a source of acetate esters and CO2 to the atmosphere.


Asunto(s)
Acetatos/metabolismo , Cistaceae/metabolismo , Dióxido de Carbono/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Redes y Vías Metabólicas , Fotosíntesis , Clima Tropical , Compuestos Orgánicos Volátiles/metabolismo
13.
J Exp Bot ; 64(12): 3697-708, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23881400

RESUMEN

Although several per cent of net carbon assimilation can be re-released as isoprene emissions to the atmosphere by many tropical plants, much uncertainty remains regarding its biological significance. In a previous study, we detected emissions of isoprene and its oxidation products methyl vinyl ketone (MVK) and methacrolein (MACR) from tropical plants under high temperature/light stress, suggesting that isoprene is oxidized not only in the atmosphere but also within plants. However, a comprehensive analysis of the suite of isoprene oxidation products in plants has not been performed and production relationships with environmental stress have not been described. In this study, putative isoprene oxidation products from mango (Mangifera indica) branches under abiotic stress were first identified. High temperature/light and freeze-thaw treatments verified direct emissions of the isoprene oxidation products MVK and MACR together with the first observations of 3-methyl furan (3-MF) and 2-methyl-3-buten-2-ol (MBO) as putative novel isoprene oxidation products. Mechanical wounding also stimulated emissions of MVK and MACR. Photosynthesis under (13)CO2 resulted in rapid (<30 min) labelling of up to five carbon atoms of isoprene, with a similar labelling pattern observed in the putative oxidation products. These observations highlight the need to investigate further the mechanisms of isoprene oxidation within plants under stress and its biological and atmospheric significance.


Asunto(s)
Annona/metabolismo , Butadienos/metabolismo , Hemiterpenos/metabolismo , Mangifera/metabolismo , Pentanos/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Dióxido de Carbono/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Espectrometría de Masas , Oxidación-Reducción , Fotosíntesis , Tallos de la Planta/metabolismo , Estrés Fisiológico
14.
MethodsX ; 10: 101986, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36654532

RESUMEN

Stem respiration is a quantitatively important, but poorly understood component of ecosystem carbon cycling in terrestrial ecosystems. However, a dynamic stem gas exchange system for quantifying real-time stem carbon dioxide (CO2) efflux (Es) is not commercially available resulting in limited observations based on the static method where air is recirculated through a stem enclosure. The static method has limited temporal resolution, suffers from condensation issues, requires a leak-free enclosure, which is often difficult to verify in the field, and requires physically removing the chamber or flushing it with ambient air before starting each measurement.•With the goal of improving our quantitative understanding of biophysical, physiological, biochemical, and environmental factors that influence diurnal Es patterns, here we present a custom system for quantifying real-time stem Es in remote tropical forests.•The system is low cost, lightweight, and waterproof with low power requirements (1.2-2.4 W) for real-time monitoring of stem Es using a 3D printed dynamic stem chamber and a 12V car battery. The design offers control over the flow rate through the stem chamber, eliminates the need for a pump to introduce air into the chamber, and water condensation issues by removing water vapor prior to CO2 analysis.•Following a simple CO2 infrared gas analyzer (IRGA) calibration and match procedure with a 400-ppm standard, we quantified diurnal Es observations over a 24-hours period during the summer growing season from an ash tree (Fraxinus sp.) in Fort Collins, Colorado. The results are consistent with previous laboratory and field studies that show Es can be suppressed during the day relative to the night.

15.
Plants (Basel) ; 11(16)2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-36015384

RESUMEN

Although apparent light inhibition of leaf day respiration is a widespread reported phenomenon, the mechanisms involved, including utilization of alternate respiratory pathways and substrates and light inhibition of TCA cycle enzymes are under active investigation. Recently, acetate fermentation was highlighted as a key drought survival strategy mediated through protein acetylation and jasmonate signaling. Here, we evaluate the light-dependence of acetate transport and assimilation in Populus trichocarpa trees using the dynamic xylem solution injection (DXSI) method developed here for continuous studies of C1 and C2 organic acid transport and light-dependent metabolism. Over 7 days, 1.0 L of [13C]formate and [13C2]acetate solutions were delivered to the stem base of 2-year old potted poplar trees, while continuous diurnal observations were made in the canopy of CO2, H2O, and isoprene gas exchange together with δ13CO2. Stem base injection of 10 mM [13C2]acetate induced an overall pattern of canopy branch headspace 13CO2 enrichment (δ13CO2 +27‱) with a diurnal structure in δ13CO2 reaching a mid-day minimum followed by a maximum shortly after darkening where δ13CO2 values rapidly increased up to +12‱. In contrast, 50 mM injections of [13C]formate were required to reach similar δ13CO2 enrichment levels in the canopy with δ13CO2 following diurnal patterns of transpiration. Illuminated leaves of detached poplar branches pretreated with 10 mM [13C2]acetate showed lower δ13CO2 (+20‱) compared to leaves treated with 10 mM [13C]formate (+320‱), the opposite pattern observed at the whole plant scale. Following dark/light cycles at the leaf-scale, rapid, strong, and reversible enhancements in headspace δ13CO2 by up to +60‱ were observed in [13C2]acetate-treated leaves which showed enhanced dihydrojasmonic acid and TCA cycle intermediate concentrations. The results are consistent with acetate in the transpiration stream as an effective activator of the jasmonate signaling pathway and respiratory substrate. The shorter lifetime of formate relative to acetate in the transpiration stream suggests rapid formate oxidation to CO2 during transport to the canopy. In contrast, acetate is efficiently transported to the canopy where an increased allocation towards mitochondrial dark respiration occurs at night. The results highlight the potential for an effective integration of acetate into glyoxylate and TCA cycles and the light-inhibition of citrate synthase as a potential regulatory mechanism controlling the diurnal allocation of acetate between anabolic and catabolic processes.

16.
Front Plant Sci ; 13: 825097, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401584

RESUMEN

With current observations and future projections of more intense and frequent droughts in the tropics, understanding the impact that extensive dry periods may have on tree and ecosystem-level transpiration and concurrent carbon uptake has become increasingly important. Here, we investigate paired soil and tree water extraction dynamics in an old-growth upland forest in central Amazonia during the 2018 dry season. Tree water use was assessed via radial patterns of sap flow in eight dominant canopy trees, each a different species with a range in diameter, height, and wood density. Paired multi-sensor soil moisture probes used to quantify volumetric water content dynamics and soil water extraction within the upper 100 cm were installed adjacent to six of those trees. To link depth-specific water extraction patterns to root distribution, fine root biomass was assessed through the soil profile to 235 cm. To scale tree water use to the plot level (stand transpiration), basal area was measured for all trees within a 5 m radius around each soil moisture probe. The sensitivity of tree transpiration to reduced precipitation varied by tree, with some increasing and some decreasing in water use during the dry period. Tree-level water use scaled with sapwood area, from 11 to 190 L per day. Stand level water use, based on multiple plots encompassing sap flow and adjacent trees, varied from ∼1.7 to 3.3 mm per day, increasing linearly with plot basal area. Soil water extraction was dependent on root biomass, which was dense at the surface (i.e., 45% in the upper 5 cm) and declined dramatically with depth. As the dry season progressed and the upper soil dried, soil water extraction shifted to deeper levels and model projections suggest that much of the water used during the month-long dry-down could be extracted from the upper 2-3 m. Results indicate variation in rates of soil water extraction across the research area and, temporally, through the soil profile. These results provide key information on whole-tree contributions to transpiration by canopy trees as water availability changes. In addition, information on simultaneous stand level dynamics of soil water extraction that can inform mechanistic models that project tropical forest response to drought.

17.
Plants (Basel) ; 10(2)2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33672332

RESUMEN

Upregulation of acetate fermentation in plants has recently been described as an evolutionarily conserved drought survival strategy, with the amount of acetate produced directly correlating to survival. However, destructive measurements are required to evaluate acetate-linked drought responses, limiting the temporal and spatial scales that can be studied. Here, 13C-labeling studies with poplar (Populus trichocarpa) branches confirmed that methyl acetate is produced in plants from the acetate-linked acetylation of methanol. Methyl acetate emissions from detached leaves were strongly stimulated during desiccation, with total emissions decreasing with the leaf developmental stage. In addition, diurnal methyl acetate emissions from whole physiologically active poplar branches increased as a function of temperature, and light-dark transitions resulted in significant emission bursts lasting several hours. During experimental drought treatments of potted poplar saplings, light-dark methyl acetate emission bursts were eliminated while strong enhancements in methyl acetate emissions lasting > 6 days were observed with their initiation coinciding with the suppression of transpiration and photosynthesis. The results suggest that methyl acetate emissions represent a novel non-invasive tracer of acetate-mediated temperature and drought survival response in plants. The findings may have important implications for the future understanding of acetate-mediated drought responses to transcription, cellular metabolism, and hormone signaling, as well as its associated changes in carbon cycling and water use from individual plants to whole ecosystems.

18.
Front Microbiol ; 12: 679671, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34248891

RESUMEN

Snowmelt dynamics are a significant determinant of microbial metabolism in soil and regulate global biogeochemical cycles of carbon and nutrients by creating seasonal variations in soil redox and nutrient pools. With an increasing concern that climate change accelerates both snowmelt timing and rate, obtaining an accurate characterization of microbial response to snowmelt is important for understanding biogeochemical cycles intertwined with soil. However, observing microbial metabolism and its dynamics non-destructively remains a major challenge for systems such as soil. Microbial volatile compounds (mVCs) emitted from soil represent information-dense signatures and when assayed non-destructively using state-of-the-art instrumentation such as Proton Transfer Reaction-Time of Flight-Mass Spectrometry (PTR-TOF-MS) provide time resolved insights into the metabolism of active microbiomes. In this study, we used PTR-TOF-MS to investigate the metabolic trajectory of microbiomes from a subalpine forest soil, and their response to a simulated wet-up event akin to snowmelt. Using an information theory approach based on the partitioning of mutual information, we identified mVC metabolite pairs with robust interactions, including those that were non-linear and with time lags. The biological context for these mVC interactions was evaluated by projecting the connections onto the Kyoto Encyclopedia of Genes and Genomes (KEGG) network of known metabolic pathways. Simulated snowmelt resulted in a rapid increase in the production of trimethylamine (TMA) suggesting that anaerobic degradation of quaternary amine osmo/cryoprotectants, such as glycine betaine, may be important contributors to this resource pulse. Unique and synergistic connections between intermediates of methylotrophic pathways such as dimethylamine, formaldehyde and methanol were observed upon wet-up and indicate that the initial pulse of TMA was likely transformed into these intermediates by methylotrophs. Increases in ammonia oxidation signatures (transformation of hydroxylamine to nitrite) were observed in parallel, and while the relative role of nitrifiers or methylotrophs cannot be confirmed, the inferred connection to TMA oxidation suggests either a direct or indirect coupling between these processes. Overall, it appears that such mVC time-series from PTR-TOF-MS combined with causal inference represents an attractive approach to non-destructively observe soil microbial metabolism and its response to environmental perturbation.

19.
Trends Plant Sci ; 25(8): 729-732, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32600937

RESUMEN

Terrestrial ecosystem dynamics are strongly modified by stresses associated with climate change, impacting plant growth and development, mortality, and ecological succession. Here we highlight the potential role of plant cell wall esters to link changes in cell wall structure and function with biosphere-atmosphere fluxes of methanol, acetic acid, carbon dioxide (CO2), and water (H2O).


Asunto(s)
Ecosistema , Ésteres , Atmósfera , Dióxido de Carbono , Pared Celular , Cambio Climático , Bosques
20.
PLoS One ; 15(5): e0227591, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32433654

RESUMEN

Plants emit high rates of methanol (meOH), generally assumed to derive from pectin demethylation, and this increases during abiotic stress. In contrast, less is known about the emission and source of acetic acid (AA). In this study, Populus trichocarpa (California poplar) leaves in different developmental stages were desiccated and quantified for total meOH and AA emissions together with bulk cell wall acetylation and methylation content. While young leaves showed high emissions of meOH (140 µmol m-2) and AA (42 µmol m-2), emissions were reduced in mature (meOH: 69%, AA: 60%) and old (meOH: 83%, AA: 76%) leaves. In contrast, the ratio of AA/meOH emissions increased with leaf development (young: 35%, mature: 43%, old: 82%), mimicking the pattern of O-acetyl/methyl ester ratios of leaf bulk cell walls (young: 35%, mature: 38%, old: 51%), which is driven by an increase in O-acetyl and decrease in methyl ester content with age. The results are consistent with meOH and AA emission sources from cell wall de-esterification, with young expanding tissues producing highly methylated pectin that is progressively demethyl-esterified. We highlight the quantification of AA/meOH emission ratios as a potential tool for rapid phenotype screening of structural carbohydrate esterification patterns.


Asunto(s)
Ácido Acético/metabolismo , Pared Celular/metabolismo , Metanol/metabolismo , Hojas de la Planta/metabolismo , Acetilación , Atmósfera , Hidrolasas de Éster Carboxílico/metabolismo , Esterificación , Metilación , Pectinas/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/genética , Populus/efectos de los fármacos , Populus/crecimiento & desarrollo , Populus/metabolismo , Estrés Fisiológico/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA