Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 15(8): 727-37, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24952505

RESUMEN

Microbes or danger signals trigger inflammasome sensors, which induce polymerization of the adaptor ASC and the assembly of ASC specks. ASC specks recruit and activate caspase-1, which induces maturation of the cytokine interleukin 1ß (IL-1ß) and pyroptotic cell death. Here we found that after pyroptosis, ASC specks accumulated in the extracellular space, where they promoted further maturation of IL-1ß. In addition, phagocytosis of ASC specks by macrophages induced lysosomal damage and nucleation of soluble ASC, as well as activation of IL-1ß in recipient cells. ASC specks appeared in bodily fluids from inflamed tissues, and autoantibodies to ASC specks developed in patients and mice with autoimmune pathologies. Together these findings reveal extracellular functions of ASC specks and a previously unknown form of cell-to-cell communication.


Asunto(s)
Apoptosis/inmunología , Caspasa 1/inmunología , Proteínas del Citoesqueleto/inmunología , Inflamación/inmunología , Interleucina-1beta/inmunología , Clorometilcetonas de Aminoácidos/farmacología , Animales , Anticuerpos/inmunología , Proteínas Reguladoras de la Apoptosis , Autoanticuerpos/inmunología , Enfermedades Autoinmunes/inmunología , Proteínas Adaptadoras de Señalización CARD , Proteínas Portadoras/genética , Caspasa 1/genética , Inhibidores de Caspasas/farmacología , Comunicación Celular/inmunología , Proteínas del Citoesqueleto/genética , Humanos , Inflamasomas/inmunología , Lisosomas/patología , Macrófagos/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR , Fagocitosis/inmunología , Priones/química , Infecciones por Pseudomonas/inmunología , Pseudomonas aeruginosa/inmunología , Transducción de Señal/inmunología
2.
Am J Physiol Lung Cell Mol Physiol ; 324(3): L373-L384, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36719079

RESUMEN

Legionella pneumophila is the main etiological agent of Legionnaires' disease, a severe bacterial pneumonia. L. pneumophila is initially engulfed by alveolar macrophages (AMs) and subvert normal cellular functions to establish a replicative vacuole. Cigarette smokers are particularly susceptible to developing Legionnaires' disease and other pulmonary infections; however, little is known about the cellular mechanisms underlying this susceptibility. To investigate this, we used a mouse model of acute cigarette smoke exposure to examine the immune response to cigarette smoke and subsequent L. pneumophila infection. Contrary to previous reports, we show that cigarette smoke exposure alone causes a significant depletion of AMs using enzymatic digestion to extract cells, or via imaging intact lung lobes by light-sheet microscopy. Furthermore, treatment of mice deficient in specific types of cell death with smoke suggests that NLRP3-driven pyroptosis is a contributor to smoke-induced death of AMs. After infection, smoke-exposed mice displayed increased pulmonary L. pneumophila loads and developed more severe disease compared with air-exposed controls. We tested if depletion of AMs was related to this phenotype by directly depleting them with clodronate liposomes and found that this also resulted in increased L. pneumophila loads. In summary, our results showed that cigarette smoke depleted AMs from the lung and that this likely contributed to more severe Legionnaires' disease. Furthermore, the role of AMs in L. pneumophila infection is more nuanced than simply providing a replicative niche, and our studies suggest they play a major role in bacterial clearance.


Asunto(s)
Fumar Cigarrillos , Legionella pneumophila , Enfermedad de los Legionarios , Ratones , Animales , Macrófagos Alveolares/metabolismo , Enfermedad de los Legionarios/metabolismo , Enfermedad de los Legionarios/microbiología , Pulmón/microbiología
3.
Inflamm Res ; 72(1): 57-74, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36322182

RESUMEN

BACKGROUND: Respiratory inflammation is the body's response to lung infection, trauma or hypersensitivity and is often accompanied by comorbidities, including gastrointestinal (GI) symptoms. Why respiratory inflammation is accompanied by GI dysfunction remains unclear. Here, we investigate the effect of lipopolysaccharide (LPS)-induced lung inflammation on intestinal barrier integrity, tight-junctions, enteric neurons and inflammatory marker expression. METHODS: Female C57bl/6 mice (6-8 weeks) were intratracheally administered LPS (5 µg) or sterile saline, and assessed after either 24 or 72 h. Total and differential cell counts in bronchoalveolar lavage fluid (BALF) were used to evaluate lung inflammation. Intestinal barrier integrity was assessed via cross sectional immunohistochemistry of tight junction markers claudin-1, claudin-4 and EpCAM. Changes in the enteric nervous system (ENS) and inflammation in the intestine were quantified immunohistochemically using neuronal markers Hu + and nNOS, glial markers GFAP and S100ß and pan leukocyte marker CD45. RESULTS: Intratracheal LPS significantly increased the number of neutrophils in BALF at 24 and 72 h. These changes were associated with an increase in CD45 + cells in the ileal mucosa at 24 and 72 h, increased goblet cell expression at 24 h, and increased expression of EpCAM at 72 h. LPS had no effect on the expression of GFAP, S100ß, nor the number of Hu + neurons or proportion of nNOS neurons in the myenteric plexus. CONCLUSIONS: Intratracheal LPS administration induces inflammation in the ileum that is associated with enhanced expression of EpCAM, decreased claudin-4 expression and increased goblet cell density, these changes may contribute to systemic inflammation that is known to accompany many inflammatory diseases of the lung.


Asunto(s)
Íleon , Inflamación , Neumonía , Animales , Femenino , Ratones , Claudina-4/metabolismo , Estudios Transversales , Molécula de Adhesión Celular Epitelial/metabolismo , Inflamación/inducido químicamente , Inflamación/metabolismo , Lipopolisacáridos/metabolismo , Pulmón/metabolismo , Neumonía/inducido químicamente , Íleon/patología
4.
Immunol Cell Biol ; 100(4): 235-249, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35175629

RESUMEN

Increased inflammasome responses are strongly implicated in inflammatory diseases; however, their specific roles are incompletely understood. Therefore, we sought to examine the roles of nucleotide-binding oligomerization domain-like receptor (NLR) family, pyrin domain-containing 3 (NLRP3) and absent in melanoma-2 (AIM2) inflammasomes in cigarette smoke-induced inflammation in a model of experimental chronic obstructive pulmonary disease (COPD). We targeted NLRP3 with the inhibitor MCC950 given prophylactically or therapeutically and examined Aim2-/- mice in cigarette smoke-induced experimental COPD. MCC950 treatment had minimal effects on disease development and/or progression. Aim2-/- mice had increased airway neutrophils with decreased caspase-1 levels, independent of changes in lung neutrophil chemokines. Suppressing neutrophils with anti-Ly6G in experimental COPD in wild-type mice reduced neutrophils in bone marrow, blood and lung. By contrast, anti-Ly6G treatment in Aim2-/- mice with experimental COPD had no effect on neutrophils in bone marrow, partially reduced neutrophils in the blood and had no effect on neutrophils or neutrophil caspase-1 levels in the lungs. These findings identify that following cigarette smoke exposure, Aim2 is important for anti-Ly6G-mediated depletion of neutrophils, suppression of neutrophil recruitment and mediates activation of caspase-1 in neutrophils.


Asunto(s)
Fumar Cigarrillos , Neutrófilos , Animales , Caspasa 1 , Fumar Cigarrillos/efectos adversos , Proteínas de Unión al ADN , Ratones , Ratones Endogámicos C57BL , Infiltración Neutrófila
5.
Eur Respir J ; 60(6)2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35777766

RESUMEN

BACKGROUND: COPD is the third leading cause of death worldwide. Cigarette smoke (CS)-induced chronic inflammation inducing airway remodelling, emphysema and impaired lung function is the primary cause. Effective therapies are urgently needed. Human chymase (hCMA)1 and its orthologue mCMA1/mouse mast cell protease (mMCP)5 are exocytosed from activated mast cells and have adverse roles in numerous disorders, but their role in COPD is unknown. METHODS: We evaluated hCMA1 levels in lung tissues of COPD patients. We used mmcp5-deficient (-/-) mice to evaluate this protease's role and potential for therapeutic targeting in CS-induced experimental COPD. In addition, we used ex vivo/in vitro studies to define mechanisms. RESULTS: The levels of hCMA1 mRNA and CMA1+ mast cells were increased in lung tissues from severe compared to early/mild COPD patients, non-COPD smokers and healthy controls. Degranulated mast cell numbers and mMCP5 protein were increased in lung tissues of wild-type mice with experimental COPD. mmcp5 -/- mice were protected against CS-induced inflammation and macrophage accumulation, airway remodelling, emphysema and impaired lung function in experimental COPD. CS extract challenge of co-cultures of mast cells from wild-type, but not mmcp5 -/- mice with wild-type lung macrophages increased in tumour necrosis factor (TNF)-α release. It also caused the release of CMA1 from human mast cells, and recombinant hCMA-1 induced TNF-α release from human macrophages. Treatment with CMA1 inhibitor potently suppressed these hallmark features of experimental COPD. CONCLUSION: CMA1/mMCP5 promotes the pathogenesis of COPD, in part, by inducing TNF-α expression and release from lung macrophages. Inhibiting hCMA1 may be a novel treatment for COPD.


Asunto(s)
Enfisema , Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Humanos , Animales , Ratones , Quimasas/metabolismo , Mastocitos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Remodelación de las Vías Aéreas (Respiratorias) , Enfisema Pulmonar/etiología , Pulmón , Enfisema/complicaciones , Inflamación/metabolismo , Ratones Endogámicos C57BL
6.
J Immunol ; 205(1): 213-222, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32461237

RESUMEN

It has been reported that a GM-CSF→CCL17 pathway, originally identified in vitro in macrophage lineage populations, is implicated in the control of inflammatory pain, as well as arthritic pain and disease. We explore, in this study and in various inflammation models, the cellular CCL17 expression and its GM-CSF dependence as well as the function of CCL17 in inflammation and pain. This study used models allowing the convenient cell isolation from Ccl17E/+ reporter mice; it also exploited both CCL17-dependent and unique CCL17-driven inflammatory pain and arthritis models, the latter permitting a radiation chimera approach to help identify the CCL17 responding cell type(s) and the mediators downstream of CCL17 in the control of inflammation and pain. We present evidence that 1) in the particular inflammation models studied, CCL17 expression is predominantly in macrophage lineage populations and is GM-CSF dependent, 2) for its action in arthritic pain and disease development, CCL17 acts on CCR4+ non-bone marrow-derived cells, and 3) for inflammatory pain development in which a GM-CSF→CCL17 pathway appears critical, nerve growth factor, CGRP, and substance P all appear to be required.


Asunto(s)
Artritis Experimental/inmunología , Quimiocina CCL17/metabolismo , Dolor/inmunología , Peritonitis/inmunología , Neumonía/inmunología , Animales , Artritis Experimental/complicaciones , Artritis Experimental/patología , Péptido Relacionado con Gen de Calcitonina/metabolismo , Quimiocina CCL17/genética , Genes Reporteros/genética , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Humanos , Ratones , Ratones Transgénicos , Factor de Crecimiento Nervioso/metabolismo , Dolor/diagnóstico , Dolor/patología , Dimensión del Dolor , Peritonitis/complicaciones , Peritonitis/patología , Neumonía/complicaciones , Neumonía/patología , Transducción de Señal/inmunología , Sustancia P/metabolismo
7.
Respirology ; 26(10): 960-973, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34224176

RESUMEN

BACKGROUND AND OBJECTIVE: Chronic obstructive pulmonary disease (COPD) is the third leading cause of illness and death worldwide. Current treatments aim to control symptoms with none able to reverse disease or stop its progression. We explored the major molecular changes in COPD pathogenesis. METHODS: We employed quantitative label-based proteomics to map the changes in the lung tissue proteome of cigarette smoke-induced experimental COPD that is induced over 8 weeks and progresses over 12 weeks. RESULTS: Quantification of 7324 proteins enabled the tracking of changes to the proteome. Alterations in protein expression profiles occurred in the induction phase, with 18 and 16 protein changes at 4- and 6-week time points, compared to age-matched controls, respectively. Strikingly, 269 proteins had altered expression after 8 weeks when the hallmark pathological features of human COPD emerge, but this dropped to 27 changes at 12 weeks with disease progression. Differentially expressed proteins were validated using other mouse and human COPD bronchial biopsy samples. Major changes in RNA biosynthesis (heterogeneous nuclear ribonucleoproteins C1/C2 [HNRNPC] and RNA-binding protein Musashi homologue 2 [MSI2]) and modulators of inflammatory responses (S100A1) were notable. Mitochondrial dysfunction and changes in oxidative stress proteins also occurred. CONCLUSION: We provide a detailed proteomic profile, identifying proteins associated with the pathogenesis and disease progression of COPD establishing a platform to develop effective new treatment strategies.


Asunto(s)
Proteómica , Enfermedad Pulmonar Obstructiva Crónica , Animales , Modelos Animales de Enfermedad , Pulmón , Ratones , Enfermedad Pulmonar Obstructiva Crónica/etiología , Humo/efectos adversos , Fumar/efectos adversos
8.
Int J Mol Sci ; 22(14)2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-34299226

RESUMEN

Cystic fibrosis (CF) is caused by a defect in the cystic fibrosis transmembrane conductance regulator protein (CFTR) which instigates a myriad of respiratory complications including increased vulnerability to lung infections and lung inflammation. The extensive influx of pro-inflammatory cells and production of mediators into the CF lung leading to lung tissue damage and increased susceptibility to microbial infections, creates a highly inflammatory environment. The CF inflammation is particularly driven by neutrophil infiltration, through the IL-23/17 pathway, and function, through NE, NETosis, and NLRP3-inflammasome formation. Better understanding of these pathways may uncover untapped therapeutic targets, potentially reducing disease burden experienced by CF patients. This review outlines the dysregulated lung inflammatory response in CF, explores the current understanding of CFTR modulators on lung inflammation, and provides context for their potential use as therapeutics for CF. Finally, we discuss the determinants that need to be taken into consideration to understand the exaggerated inflammatory response in the CF lung.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Fibrosis Quística/tratamiento farmacológico , Neumonía/tratamiento farmacológico , Aminofenoles/uso terapéutico , Aminopiridinas/uso terapéutico , Antiinflamatorios/uso terapéutico , Benzodioxoles/uso terapéutico , Regulador de Conductancia de Transmembrana de Fibrosis Quística/efectos de los fármacos , Humanos , Indoles/uso terapéutico , Inflamación/tratamiento farmacológico , Transporte Iónico , Pulmón/metabolismo , Pulmón/fisiología , Macrófagos/metabolismo , Quinolonas/uso terapéutico , Transducción de Señal
9.
J Pathol ; 243(4): 510-523, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28862768

RESUMEN

Asthma is a chronic inflammatory disease of the airways. It is characterized by allergic airway inflammation, airway remodelling, and airway hyperresponsiveness (AHR). Asthma patients, in particular those with chronic or severe asthma, have airway remodelling that is associated with the accumulation of extracellular matrix (ECM) proteins, such as collagens. Fibulin-1 (Fbln1) is an important ECM protein that stabilizes collagen and other ECM proteins. The level of Fbln1c, one of the four Fbln1 variants, which predominates in both humans and mice, is increased in the serum and airways fluids in asthma but its function is unclear. We show that the level of Fbln1c was increased in the lungs of mice with house dust mite (HDM)-induced chronic allergic airway disease (AAD). Genetic deletion of Fbln1c and therapeutic inhibition of Fbln1c in mice with chronic AAD reduced airway collagen deposition, and protected against AHR. Fbln1c-deficient (Fbln1c-/- ) mice had reduced mucin (MUC) 5 AC levels, but not MUC5B levels, in the airways as compared with wild-type (WT) mice. Fbln1c interacted with fibronectin and periostin that was linked to collagen deposition around the small airways. Fbln1c-/- mice with AAD also had reduced numbers of α-smooth muscle actin-positive cells around the airways and reduced airway contractility as compared with WT mice. After HDM challenge, these mice also had fewer airway inflammatory cells, reduced interleukin (IL)-5, IL-13, IL-33, tumour necrosis factor (TNF) and CXCL1 levels in the lungs, and reduced IL-5, IL-33 and TNF levels in lung-draining lymph nodes. Therapeutic targeting of Fbln1c reduced the numbers of GATA3-positive Th2 cells in the lymph nodes and lungs after chronic HDM challenge. Treatment also reduced the secretion of IL-5 and IL-13 from co-cultured dendritic cells and T cells restimulated with HDM extract. Human epithelial cells cultured with Fbln1c peptide produced more CXCL1 mRNA than medium-treated controls. Our data show that Fbln1c may be a therapeutic target in chronic asthma. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias) , Asma/metabolismo , Hiperreactividad Bronquial/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Inflamación/metabolismo , Pulmón/metabolismo , Actinas/metabolismo , Animales , Asma/inmunología , Asma/fisiopatología , Asma/prevención & control , Hiperreactividad Bronquial/inmunología , Hiperreactividad Bronquial/fisiopatología , Hiperreactividad Bronquial/prevención & control , Broncoconstricción , Proteínas de Unión al Calcio/deficiencia , Proteínas de Unión al Calcio/genética , Células Cultivadas , Técnicas de Cocultivo , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Proteínas de la Matriz Extracelular/deficiencia , Proteínas de la Matriz Extracelular/genética , Femenino , Genotipo , Humanos , Inflamación/inmunología , Inflamación/fisiopatología , Inflamación/prevención & control , Mediadores de Inflamación/metabolismo , Pulmón/inmunología , Pulmón/fisiopatología , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Interferencia de ARN , Transducción de Señal , Linfocitos T/inmunología , Linfocitos T/metabolismo , Factores de Tiempo , Transfección
10.
J Allergy Clin Immunol ; 139(2): 519-532, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27448447

RESUMEN

BACKGROUND: Severe steroid-insensitive asthma is a substantial clinical problem. Effective treatments are urgently required, however, their development is hampered by a lack of understanding of the mechanisms of disease pathogenesis. Steroid-insensitive asthma is associated with respiratory tract infections and noneosinophilic endotypes, including neutrophilic forms of disease. However, steroid-insensitive patients with eosinophil-enriched inflammation have also been described. The mechanisms that underpin infection-induced, severe steroid-insensitive asthma can be elucidated by using mouse models of disease. OBJECTIVE: We sought to develop representative mouse models of severe, steroid-insensitive asthma and to use them to identify pathogenic mechanisms and investigate new treatment approaches. METHODS: Novel mouse models of Chlamydia, Haemophilus influenzae, influenza, and respiratory syncytial virus respiratory tract infections and ovalbumin-induced, severe, steroid-insensitive allergic airway disease (SSIAAD) in BALB/c mice were developed and interrogated. RESULTS: Infection induced increases in the levels of microRNA (miRNA)-21 (miR-21) expression in the lung during SSIAAD, whereas expression of the miR-21 target phosphatase and tensin homolog was reduced. This was associated with an increase in levels of phosphorylated Akt, an indicator of phosphoinositide 3-kinase (PI3K) activity, and decreased nuclear histone deacetylase (HDAC)2 levels. Treatment with an miR-21-specific antagomir (Ant-21) increased phosphatase and tensin homolog levels. Treatment with Ant-21, or the pan-PI3K inhibitor LY294002, reduced PI3K activity and restored HDAC2 levels. This led to suppression of airway hyperresponsiveness and restored steroid sensitivity to allergic airway disease. These observations were replicated with SSIAAD associated with 4 different pathogens. CONCLUSION: We identify a previously unrecognized role for an miR-21/PI3K/HDAC2 axis in SSIAAD. Our data highlight miR-21 as a novel therapeutic target for the treatment of this form of asthma.


Asunto(s)
Asma/genética , Chlamydia muridarum/inmunología , Haemophilus influenzae/inmunología , Histona Desacetilasa 2/metabolismo , Subtipo H1N1 del Virus de la Influenza A/inmunología , MicroARNs/metabolismo , Fosfohidrolasa PTEN/metabolismo , Neumonía/genética , Virus Sincitiales Respiratorios/inmunología , Infecciones del Sistema Respiratorio/genética , Animales , Antagomirs/genética , Asma/tratamiento farmacológico , Asma/inmunología , Dexametasona/uso terapéutico , Modelos Animales de Enfermedad , Resistencia a Medicamentos , Regulación de la Expresión Génica , Histona Desacetilasa 2/genética , Humanos , Ratones , Ratones Endogámicos BALB C , MicroARNs/genética , Fosfohidrolasa PTEN/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Neumonía/tratamiento farmacológico , Neumonía/inmunología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Infecciones del Sistema Respiratorio/tratamiento farmacológico , Infecciones del Sistema Respiratorio/inmunología
11.
PLoS Pathog ; 11(4): e1004549, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25894560

RESUMEN

Pathogenic bacterial infections of the lung are life threatening and underpin chronic lung diseases. Current treatments are often ineffective potentially due to increasing antibiotic resistance and impairment of innate immunity by disease processes and steroid therapy. Manipulation miRNA directly regulating anti-microbial machinery of the innate immune system may boost host defence responses. Here we demonstrate that miR-328 is a key element of the host response to pulmonary infection with non-typeable haemophilus influenzae and pharmacological inhibition in mouse and human macrophages augments phagocytosis, the production of reactive oxygen species, and microbicidal activity. Moreover, inhibition of miR-328 in respiratory models of infection, steroid-induced immunosuppression, and smoke-induced emphysema enhances bacterial clearance. Thus, miRNA pathways can be targeted in the lung to enhance host defence against a clinically relevant microbial infection and offer a potential new anti-microbial approach for the treatment of respiratory diseases.


Asunto(s)
Infecciones por Haemophilus/inmunología , Macrófagos/inmunología , MicroARNs/antagonistas & inhibidores , Neutrófilos/inmunología , Infecciones del Sistema Respiratorio/inmunología , Animales , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Infecciones por Haemophilus/genética , Haemophilus influenzae , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Análisis de Secuencia por Matrices de Oligonucleótidos , Infecciones del Sistema Respiratorio/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
13.
Biol Reprod ; 94(2): 39, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26764348

RESUMEN

The theory of fetal origins of adult disease was first proposed in 1989, and in the decades since, a wide range of other diseases from obesity to asthma have been found to originate in early development. Because mammalian oocyte development begins in fetal life it has been suggested that environmental and lifestyle factors of the mother could directly impact the fertility of subsequent generations. Cigarette smoke is a known ovotoxicant in active smokers, yet disturbingly 13% of Australian and 12% of US women continue to smoke throughout pregnancy. The focus of our investigation was to characterize the adverse effects of smoking on ovary and oocyte quality in female offspring exposed in utero. Pregnant mice were nasally exposed to cigarette smoke for 12 wk throughout pregnancy/lactation, and ovary and oocyte quality of the F1 (maternal smoke exposed) generation was examined. Neonatal ovaries displayed abnormal somatic cell proliferation and increased apoptosis, leading to a reduction in follicle numbers. Further investigation found that altered somatic cell proliferation and reduced follicle number continued into adulthood; however, apoptosis did not. This reduction in follicles resulted in decreased oocyte numbers, with these oocytes found to have elevated levels of oxidative stress, altered metaphase II spindle, and reduced sperm-egg interaction. These ovarian and oocyte changes ultimately lead to subfertility, with maternal smoke-exposed animals having smaller litters and also taking longer to conceive. In conclusion, our results demonstrate that in utero and lactational exposure to cigarette smoke can have long-lasting effects on the fertility of the next generation of females.


Asunto(s)
Fertilidad/efectos de los fármacos , Exposición Materna , Oocitos/efectos de los fármacos , Folículo Ovárico/efectos de los fármacos , Ovario/efectos de los fármacos , Humo/efectos adversos , Animales , Femenino , Ratones , Oocitos/metabolismo , Folículo Ovárico/metabolismo , Ovario/metabolismo , Estrés Oxidativo/efectos de los fármacos , Embarazo , Interacciones Espermatozoide-Óvulo
14.
J Biol Chem ; 289(26): 18214-27, 2014 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-24821729

RESUMEN

Protease serine member S31 (Prss31)/transmembrane tryptase/tryptase-γ is a mast cell (MC)-restricted protease of unknown function that is retained on the outer leaflet of the plasma membrane when MCs are activated. We determined the nucleotide sequences of the Prss31 gene in different mouse strains and then used a Cre/loxP homologous recombination approach to create a novel Prss31(-/-) C57BL/6 mouse line. The resulting animals exhibited no obvious developmental abnormality, contained normal numbers of granulated MCs in their tissues, and did not compensate for their loss of the membrane tryptase by increasing their expression of other granule proteases. When Prss31-null MCs were activated with a calcium ionophore or by their high affinity IgE receptors, they degranulated in a pattern similar to that of WT MCs. Prss31-null mice had increased baseline airway reactivity to methacholine but markedly reduced experimental chronic obstructive pulmonary disease and colitis, thereby indicating both beneficial and adverse functional roles for the tryptase. In a cigarette smoke-induced model of chronic obstructive pulmonary disease, WT mice had more pulmonary macrophages, higher histopathology scores, and more fibrosis in their small airways than similarly treated Prss31-null mice. In a dextran sodium sulfate-induced acute colitis model, WT mice lost more weight, had higher histopathology scores, and contained more Cxcl-2 and IL-6 mRNA in their colons than similarly treated Prss31-null mice. The accumulated data raise the possibility that inhibitors of this membrane tryptase may provide additional therapeutic benefit in the treatment of humans with these MC-dependent inflammatory diseases.


Asunto(s)
Colitis/enzimología , Pulmón/fisiopatología , Mastocitos/enzimología , Proteínas de la Membrana/inmunología , Enfermedad Pulmonar Obstructiva Crónica/enzimología , Triptasas/inmunología , Animales , Colitis/genética , Colitis/inmunología , Colitis/fisiopatología , Modelos Animales de Enfermedad , Humanos , Pulmón/enzimología , Pulmón/inmunología , Masculino , Mastocitos/inmunología , Proteínas de la Membrana/genética , Ratones Endogámicos BALB C , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Noqueados , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Triptasas/genética
15.
Brain Behav Immun ; 44: 235-46, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25449583

RESUMEN

The immune and nociceptive systems are shaped during the neonatal period where they undergo fine-tuning and maturation. Painful experiences during this sensitive period of development are known to produce long-lasting effects on the immune and nociceptive responses. It is less clear, however, whether inflammatory pain responses are primed by neonatal exposure to mild immunological stimuli, such as with lipopolysaccharide (LPS). Here, we examine the impact of neonatal LPS exposure on inflammatory pain responses, peripheral and hippocampal interleukin-1ß (IL-1ß), as well as mast cell number and degranulation in preadolescent and adult rats. Wistar rats were injected with LPS (0.05mg/kg IP, Salmonella enteritidis) or saline on postnatal days (PNDs) 3 and 5 and later subjected to the formalin test at PNDs 22 and 80-97. At both time-points, and one-hour after formalin injection, blood and hippocampus were collected for measuring circulating and central IL-1ß levels using ELISA and Western blot, respectively. Paw tissue was also isolated to assess mast cell number and degree of degranulation using Toluidine Blue staining. Behavioural analyses indicate that at PND 22, LPS-challenged rats displayed enhanced flinching (p<.01) and licking (p<.01) in response to formalin injection. At PNDs 80-97, LPS-challenged rats exhibited increased flinching (p<.05), an effect observed in males only. Furthermore, neonatal LPS exposure enhanced circulating IL-1ß and mast cell degranulation in preadolescent but not adult rats following formalin injection. Hippocampal IL-1ß levels were increased in LPS-treated adult but not preadolescent rats in response to formalin injection. These data suggest neonatal LPS exposure produces developmentally regulated changes in formalin-induced behavioural responses, peripheral and central IL-1ß levels, as well as mast cell degranulation following noxious stimulation later in life. These findings highlight the importance of immune activation during the neonatal period in shaping immune response and pain sensitivity later in life. This is of clinical relevance given the high prevalence of bacterial infection during the neonatal period, particularly in the vulnerable population of preterm infants admitted to neonatal intensive care units.


Asunto(s)
Encefalitis/inmunología , Nocicepción/fisiología , Dolor/inmunología , Animales , Animales Recién Nacidos , Recuento de Células , Degranulación de la Célula , Encefalitis/inducido químicamente , Encefalitis/metabolismo , Femenino , Formaldehído , Hipocampo/inmunología , Hipocampo/metabolismo , Inflamación/inducido químicamente , Inflamación/inmunología , Inflamación/metabolismo , Interleucina-1beta/sangre , Interleucina-1beta/inmunología , Lipopolisacáridos , Masculino , Mastocitos/inmunología , Mastocitos/fisiología , Actividad Motora , Dolor/inducido químicamente , Dimensión del Dolor , Ratas , Ratas Wistar
16.
J Allergy Clin Immunol ; 131(3): 752-62, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23380220

RESUMEN

BACKGROUND: Cigarette smoke-induced chronic obstructive pulmonary disease (COPD) is a life-threatening inflammatory disorder of the lung. The development of effective therapies for COPD has been hampered by the lack of an animal model that mimics the human disease in a short timeframe. OBJECTIVES: We sought to create an early-onset mouse model of cigarette smoke-induced COPD that develops the hallmark features of the human condition in a short time-frame. We also sought to use this model to better understand pathogenesis and the roles of macrophages and mast cells (MCs) in patients with COPD. METHODS: Tightly controlled amounts of cigarette smoke were delivered to the airways of mice, and the development of the pathologic features of COPD was assessed. The roles of macrophages and MC tryptase in pathogenesis were evaluated by using depletion and in vitro studies and MC protease 6-deficient mice. RESULTS: After just 8 weeks of smoke exposure, wild-type mice had chronic inflammation, mucus hypersecretion, airway remodeling, emphysema, and reduced lung function. These characteristic features of COPD were glucocorticoid resistant and did not spontaneously resolve. Systemic effects on skeletal muscle and the heart and increased susceptibility to respiratory tract infections also were observed. Macrophages and tryptase-expressing MCs were required for the development of COPD. Recombinant MC tryptase induced proinflammatory responses from cultured macrophages. CONCLUSION: A short-term mouse model of cigarette smoke-induced COPD was developed in which the characteristic features of the disease were induced more rapidly than in existing models. The model can be used to better understand COPD pathogenesis, and we show a requirement for macrophages and tryptase-expressing MCs.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Humo/efectos adversos , Triptasas/inmunología , Remodelación de las Vías Aéreas (Respiratorias) , Animales , Macrófagos/inmunología , Mastocitos/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad Pulmonar Obstructiva Crónica/patología , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Pruebas de Función Respiratoria , Nicotiana , Triptasas/deficiencia , Triptasas/genética
17.
PLoS Genet ; 6(1): e1000816, 2010 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-20084116

RESUMEN

Contributions of null and hypomorphic alleles of Apc in mice produce both developmental and pathophysiological phenotypes. To ascribe the resulting genotype-to-phenotype relationship unambiguously to the Wnt/beta-catenin pathway, we challenged the allele combinations by genetically restricting intracellular beta-catenin expression in the corresponding compound mutant mice. Subsequent evaluation of the extent of resulting Tcf4-reporter activity in mouse embryo fibroblasts enabled genetic measurement of Wnt/beta-catenin signaling in the form of an allelic series of mouse mutants. Different permissive Wnt signaling thresholds appear to be required for the embryonic development of head structures, adult intestinal polyposis, hepatocellular carcinomas, liver zonation, and the development of natural killer cells. Furthermore, we identify a homozygous Apc allele combination with Wnt/beta-catenin signaling capacity similar to that in the germline of the Apc(min) mice, where somatic Apc loss-of-heterozygosity triggers intestinal polyposis, to distinguish whether co-morbidities in Apc(min) mice arise independently of intestinal tumorigenesis. Together, the present genotype-phenotype analysis suggests tissue-specific response levels for the Wnt/beta-catenin pathway that regulate both physiological and pathophysiological conditions.


Asunto(s)
Ratones/genética , Ratones/metabolismo , Transducción de Señal , beta Catenina/metabolismo , Proteína de la Poliposis Adenomatosa del Colon/genética , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Animales , Células Cultivadas , Embrión de Mamíferos , Femenino , Fibroblastos/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/embriología , Intestinos/crecimiento & desarrollo , Hígado/embriología , Hígado/crecimiento & desarrollo , Hígado/metabolismo , Masculino , Ratones/embriología , Ratones/crecimiento & desarrollo , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Wnt , Proteína Wnt3 , beta Catenina/genética
18.
ERJ Open Res ; 9(2)2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36891079

RESUMEN

Background: COPD patients are more susceptible to viral respiratory infections and their sequelae, and have intrinsically weaker immune responses to vaccinations against influenza and other pathogens. Prime-boost, double-dose immunisation has been suggested as a general strategy to overcome weak humoral response to vaccines, such as seasonal influenza vaccination, in susceptible populations with weak immunity. However, this strategy, which may also provide fundamental insights into the nature of weakened immunity, has not been formally studied in COPD. Methods: We conducted an open-label study of seasonal influenza vaccination in 33 vaccine-experienced COPD patients recruited from established cohorts (mean age 70 (95% CI 66.9-73.2) years; mean forced expiratory volume in 1 s/forced vital capacity ratio 53.4% (95% CI 48.0-58.8%)). Patients received two sequential standard doses of the 2018 quadrivalent influenza vaccine (15 µg haemagglutinin per strain) in a prime-boost schedule 28 days apart. We measured strain-specific antibody titres, an accepted surrogate of likely efficacy, and induction of strain-specific B-cell responses following the prime and boost immunisations. Results: Whereas priming immunisation induced the expected increase in strain-specific antibody titres, a second booster dose was strikingly ineffective at further increasing antibody titres. Similarly, priming immunisation induced strain-specific B-cells, but a second booster dose did not further enhance the B-cell response. Poor antibody responses were associated with male gender and cumulative cigarette exposure. Conclusions: Prime-boost, double-dose immunisation does not further improve influenza vaccine immunogenicity in previously vaccinated COPD patients. These findings underscore the need to design more effective vaccine strategies for COPD patients for influenza.

19.
Immunol Cell Biol ; 90(5): 559-63, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-21670738

RESUMEN

Among the many inflammatory mediators induced by the prototypical inflammatory stimulus lipopolysaccharide (LPS), which signals via Toll-like receptor (TLR)-4, interleukin (IL)-6 has recently been shown to feedback and augment TLR4 signaling when overproduced in LPS hypersensitive gp130(F/F) mice. This regulation by IL-6 in gp130(F/F) mice requires hyperactivation of the latent transcription factor signal transducer and activator of transcription (STAT) 3 via the IL-6 signaling receptor subunit gp130. However, the identity of LPS/TLR4-responsive inflammatory signaling pathways and gene networks, which are modulated by IL-6 (via gp130/STAT3), and the extent to which the tissue and cellular context of this regulation contributes to LPS-induced endotoxic shock in gp130(F/F) mice, are unknown. We report here that in LPS-treated macrophages from gp130(F/F) mice, gp130 hyperactivation upregulated the LPS-induced expression of inflammatory mediators downstream of Janus kinase (JAK)/STAT, nuclear factor κ-light-chain-enhancer of activated B cells, interferon regulatory factor and c-Jun N-terminal kinase/p38 mitogen-activated protein kinase pathways. Notably, however, LPS administration to bone marrow chimeras indicated that heightened LPS/TLR4 signaling in haemopoietic-derived gp130(F/F) immune cells is dispensable for the hypersensitivity of gp130(F/F) mice to LPS-induced endotoxemia. To understand the molecular consequences of gp130 hyperactivity in non-haemopoietic tissue on LPS-induced systemic inflammation, global gene expression profiling of livers from LPS-treated gp130(F/F) mice was performed and identified 264 hepatic LPS-responsive genes, which are differentially regulated by hyperactive gp130 signaling. Collectively, the substantial transcriptional reprogramming of LPS-responsive genes in gp130(F/F) mice emphasizes non-haemopoietic gp130 signaling as a key regulator of systemic inflammatory responses during LPS-induced endotoxemia.


Asunto(s)
Hígado/inmunología , Macrófagos/inmunología , Factor de Transcripción STAT3/metabolismo , Choque Séptico/inmunología , Receptor Toll-Like 4/metabolismo , Animales , Receptor gp130 de Citocinas/genética , Perfilación de la Expresión Génica , Interleucina-6/metabolismo , Lipopolisacáridos/inmunología , Lipopolisacáridos/metabolismo , Sistema de Señalización de MAP Quinasas/genética , Ratones , Ratones Transgénicos , Análisis por Micromatrices , Mutación/genética , Factor de Transcripción STAT3/genética , Choque Séptico/genética , Transducción de Señal/genética , Transducción de Señal/inmunología , Receptor Toll-Like 4/genética , Quimera por Trasplante
20.
Int Arch Allergy Immunol ; 158(4): 347-58, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22472801

RESUMEN

BACKGROUND: Innate properties that enhance immune responses might increase the propensity of certain allergens to induce allergic sensitization. Either a direct adjuvant effect or the increased immune response to the allergen could then increase allergic responses to bystander antigens. Here, we report on a model that does not use Th2-skewing adjuvants and yet achieves sensitization solely via the nasal mucosa. METHODS: Animals were sensitized with either enzymatically active, inactive or non-activated cysteine proteases via the nasal mucosa. Following two sensitization phases, mice were challenged with a higher dose of allergen. For bystander sensitization, mice received recombinant Der p 2 at sensitization in conjunction with the cysteine protease and were challenged with rDer p 2 alone. Sensitization was determined by measuring allergen-specific antibody responses and cytokine and cellular infiltrates into the lungs following challenge. RESULTS: Sensitization for Th2-type lung hypersensitivity for both the cysteine protease and bystander antigens was readily achieved and both were dependent on the proteolytic activity of the allergen. Bystander adjuvant activity was demonstrated for mice that were low IgE responders to the cysteine protease, showing a response independent from the immune response to the enhancing cysteine protease. Airway hyperreactivity was induced in the susceptible NOD strain of mouse, and mice subjected to prolonged administration of papain maintained the ability to produce lung hypersensitivity and Th2-type responses. CONCLUSIONS: These experiments demonstrate that cysteine protease activity at low doses can be an adjuvant for respiratory Th2 responses for themselves and bystander antigens in the absence of another adjuvant.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Alérgenos/inmunología , Proteasas de Cisteína/inmunología , Inmunización , Células Th2/inmunología , Animales , Antígenos Dermatofagoides/inmunología , Proteínas de Artrópodos/inmunología , Asma/inmunología , Citocinas/inmunología , Femenino , Inmunidad Celular/efectos de los fármacos , Inmunoglobulina E/sangre , Inmunoglobulina E/inmunología , Pulmón/efectos de los fármacos , Pulmón/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA