RESUMEN
Pathogenic variants in RAD51C confer an elevated risk of breast and ovarian cancer, while individuals homozygous for specific RAD51C alleles may develop Fanconi anemia. Using saturation genome editing (SGE), we functionally assess 9,188 unique variants, including >99.5% of all possible coding sequence single-nucleotide alterations. By computing changes in variant abundance and Gaussian mixture modeling (GMM), we functionally classify 3,094 variants to be disruptive and use clinical truth sets to reveal an accuracy/concordance of variant classification >99.9%. Cell fitness was the primary assay readout allowing us to observe a phenomenon where specific missense variants exhibit distinct depletion kinetics potentially suggesting that they represent hypomorphic alleles. We further explored our exhaustive functional map, revealing critical residues on the RAD51C structure and resolving variants found in cancer-segregating kindred. Furthermore, through interrogation of UK Biobank and a large multi-center ovarian cancer cohort, we find significant associations between SGE-depleted variants and cancer diagnoses.
Asunto(s)
Proteínas de Unión al ADN , Edición Génica , Neoplasias Ováricas , Humanos , Femenino , Edición Génica/métodos , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Neoplasias Ováricas/genética , Neoplasias de la Mama/genética , Alelos , Sistemas CRISPR-Cas/genéticaRESUMEN
Numerous DNA double-strand breaks (DSBs) arise during meiosis to initiate homologous recombination. These DSBs are usually repaired faithfully, but here, we uncover a distinct type of mutational event in which deletions form via joining of ends from two closely spaced DSBs (double cuts) within a single hotspot or at adjacent hotspots on the same or different chromatids. Deletions occur in normal meiosis but are much more frequent when DSB formation is dysregulated in the absence of the ATM kinase. Events between chromosome homologs point to multi-chromatid damage and aborted gap repair. Some deletions contain DNA from other hotspots, indicating that double cutting at distant sites creates substrates for insertional mutagenesis. End joining at double cuts can also yield tandem duplications or extrachromosomal circles. Our findings highlight the importance of DSB regulation and reveal a previously hidden potential for meiotic mutagenesis that is likely to affect human health and genome evolution.
Asunto(s)
Eliminación de Gen , Duplicación de Gen , Células Germinativas/metabolismo , Recombinación Genética/genética , Animales , Proteínas de la Ataxia Telangiectasia Mutada/deficiencia , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Secuencia de Bases , Cromátides/metabolismo , Cromosomas de los Mamíferos/genética , Cruzamientos Genéticos , Roturas del ADN de Doble Cadena , ADN Circular/genética , Femenino , Genoma , Haplotipos/genética , Recombinación Homóloga/genética , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Mutagénesis Insercional/genética , Mutación/genéticaRESUMEN
Correction of disease-causing mutations in human embryos holds the potential to reduce the burden of inherited genetic disorders and improve fertility treatments for couples with disease-causing mutations in lieu of embryo selection. Here, we evaluate repair outcomes of a Cas9-induced double-strand break (DSB) introduced on the paternal chromosome at the EYS locus, which carries a frameshift mutation causing blindness. We show that the most common repair outcome is microhomology-mediated end joining, which occurs during the first cell cycle in the zygote, leading to embryos with non-mosaic restoration of the reading frame. Notably, about half of the breaks remain unrepaired, resulting in an undetectable paternal allele and, after mitosis, loss of one or both chromosomal arms. Correspondingly, Cas9 off-target cleavage results in chromosomal losses and hemizygous indels because of cleavage of both alleles. These results demonstrate the ability to manipulate chromosome content and reveal significant challenges for mutation correction in human embryos.
Asunto(s)
Alelos , Proteína 9 Asociada a CRISPR/metabolismo , Cromosomas Humanos/genética , Embrión de Mamíferos/metabolismo , Animales , Secuencia de Bases , Blastocisto/metabolismo , Ciclo Celular/genética , Línea Celular , Deleción Cromosómica , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades/genética , Implantación del Embrión/genética , Proteínas del Ojo/genética , Fertilización , Edición Génica , Reordenamiento Génico/genética , Sitios Genéticos , Genoma Humano , Genotipo , Heterocigoto , Células Madre Embrionarias Humanas/metabolismo , Humanos , Mutación INDEL/genética , Ratones , Mitosis , Sistemas de Lectura Abierta/genética , Polimorfismo de Nucleótido Simple/genéticaRESUMEN
Tumor suppressor BRCA2 functions in homology-directed repair (HDR), the protection of stalled replication forks, and the suppression of replicative gaps, but their relative contributions to genome integrity and chemotherapy response are under scrutiny. Here, we report that mouse and human cells require a RAD51 filament stabilization motif in BRCA2 for fork protection and gap suppression but not HDR. In mice, the loss of fork protection/gap suppression does not compromise genome stability or shorten tumor latency. By contrast, HDR deficiency increases spontaneous and replication stress-induced chromosome aberrations and tumor predisposition. Unlike with HDR, fork protection/gap suppression defects are also observed in Brca2 heterozygous cells, likely due to reduced RAD51 stabilization at stalled forks/gaps. Gaps arise from PRIMPOL activity, which is associated with 5-hydroxymethyl-2'-deoxyuridine sensitivity due to the formation of SMUG1-generated abasic sites and is exacerbated by poly(ADP-ribose) polymerase (PARP) inhibition. However, HDR proficiency has the major role in mitigating sensitivity to chemotherapeutics, including PARP inhibitors.
Asunto(s)
Proteína BRCA2 , Replicación del ADN , Recombinasa Rad51 , Animales , Humanos , Ratones , Proteína BRCA2/metabolismo , Reparación del ADN , Inestabilidad Genómica , Genómica , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Reparación del ADN por RecombinaciónRESUMEN
Heritability and genome stability are shaped by meiotic recombination, which is initiated via hundreds of DNA double-strand breaks (DSBs). The distribution of DSBs throughout the genome is not random, but mechanisms molding this landscape remain poorly understood. Here, we exploit genome-wide maps of mouse DSBs at unprecedented nucleotide resolution to uncover previously invisible spatial features of recombination. At fine scale, we reveal a stereotyped hotspot structure-DSBs occur within narrow zones between methylated nucleosomes-and identify relationships between SPO11, chromatin, and the histone methyltransferase PRDM9. At large scale, DSB formation is suppressed on non-homologous portions of the sex chromosomes via the DSB-responsive kinase ATM, which also shapes the autosomal DSB landscape at multiple size scales. We also provide a genome-wide analysis of exonucleolytic DSB resection lengths and elucidate spatial relationships between DSBs and recombination products. Our results paint a comprehensive picture of features governing successive steps in mammalian meiotic recombination.
Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Inestabilidad Genómica/genética , Recombinación Homóloga , Meiosis/genética , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Cromatina/genética , Cromatina/metabolismo , Metilación de ADN , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Ratones , Ratones Endogámicos C57BL , Nucleosomas/enzimología , Nucleosomas/genética , Cromosoma X/genética , Cromosoma Y/genéticaRESUMEN
Homologous recombination (HR) fulfils a pivotal role in the repair of DNA double-strand breaks and collapsed replication forks1. HR depends on the products of several paralogues of RAD51, including the tetrameric complex of RAD51B, RAD51C, RAD51D and XRCC2 (BCDX2)2. BCDX2 functions as a mediator of nucleoprotein filament assembly by RAD51 and single-stranded DNA (ssDNA) during HR, but its mechanism remains undefined. Here we report cryogenic electron microscopy reconstructions of human BCDX2 in apo and ssDNA-bound states. The structures reveal how the amino-terminal domains of RAD51B, RAD51C and RAD51D participate in inter-subunit interactions that underpin complex formation and ssDNA-binding specificity. Single-molecule DNA curtain analysis yields insights into how BCDX2 enhances RAD51-ssDNA nucleoprotein filament assembly. Moreover, our cryogenic electron microscopy and functional analyses explain how RAD51C alterations found in patients with cancer3-6 inactivate DNA binding and the HR mediator activity of BCDX2. Our findings shed light on the role of BCDX2 in HR and provide a foundation for understanding how pathogenic alterations in BCDX2 impact genome repair.
Asunto(s)
Proteínas de Unión al ADN , Recombinación Homóloga , Complejos Multiproteicos , Humanos , Microscopía por Crioelectrón , Replicación del ADN , ADN de Cadena Simple/química , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/ultraestructura , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/ultraestructura , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Neoplasias/genética , Nucleoproteínas/metabolismo , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Recombinasa Rad51/química , Recombinasa Rad51/metabolismo , Recombinasa Rad51/ultraestructura , Especificidad por SustratoRESUMEN
Crossover recombination is critical for meiotic chromosome segregation, but how mammalian crossing over is accomplished is poorly understood. Here, we illuminate how strands exchange during meiotic recombination in male mice by analyzing patterns of heteroduplex DNA in recombinant molecules preserved by the mismatch correction deficiency of Msh2-/- mutants. Surprisingly, MSH2-dependent recombination suppression was not evident. However, a substantial fraction of crossover products retained heteroduplex DNA, and some provided evidence of MSH2-independent correction. Biased crossover resolution was observed, consistent with asymmetry between DNA ends in earlier intermediates. Many crossover products yielded no heteroduplex DNA, suggesting dismantling by D-loop migration. Unlike the complexity of crossovers in yeast, these simple modifications of the original double-strand break repair model-asymmetry in recombination intermediates and D-loop migration-may be sufficient to explain most meiotic crossing over in mice while also addressing long-standing questions related to Holliday junction resolution.
Asunto(s)
Intercambio Genético/fisiología , Recombinación Homóloga/fisiología , Meiosis/fisiología , Animales , Segregación Cromosómica/genética , Intercambio Genético/genética , Roturas del ADN de Doble Cadena , Reparación del ADN/genética , ADN Cruciforme/genética , ADN Cruciforme/metabolismo , Recombinación Homóloga/genética , Masculino , Meiosis/genética , Ratones , Ratones Endogámicos DBA , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Ácidos Nucleicos Heterodúplex/genéticaRESUMEN
Homologous recombination (HR) is a prominent DNA repair pathway maintaining genome integrity. Mutations in many HR genes lead to cancer predisposition. Paradoxically, the implication of the pivotal HR factor RAD51 on cancer development remains puzzling. Particularly, no RAD51 mouse models are available to address the role of RAD51 in aging and carcinogenesis in vivo. We engineered a mouse model with an inducible dominant-negative form of RAD51 (SMRad51) that suppresses RAD51-mediated HR without stimulating alternative mutagenic repair pathways. We found that in vivo expression of SMRad51 led to replicative stress, systemic inflammation, progenitor exhaustion, premature aging and reduced lifespan, but did not trigger tumorigenesis. Expressing SMRAD51 in a breast cancer predisposition mouse model (PyMT) decreased the number and the size of tumors, revealing an anti-tumor activity of SMRAD51. We propose that these in vivo phenotypes result from chronic endogenous replication stress caused by HR decrease, which preferentially targets progenitors and tumor cells. Our work underlines the importance of RAD51 activity for progenitor cell homeostasis, preventing aging and more generally for the balance between cancer and aging.
Asunto(s)
Neoplasias , Recombinasa Rad51 , Animales , Ratones , Envejecimiento/genética , Carcinogénesis/genética , Transformación Celular Neoplásica , Daño del ADN , Reparación del ADN , Recombinación Homóloga , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismoRESUMEN
Breast cancer suppressor BRCA2 is critical for maintenance of genomic integrity and resistance to agents that damage DNA or collapse replication forks, presumably through homology-directed repair of double-strand breaks (HDR). Using single-molecule DNA fiber analysis, we show here that nascent replication tracts created before fork stalling with hydroxyurea are degraded in the absence of BRCA2 but are stable in wild-type cells. BRCA2 mutational analysis reveals that a conserved C-terminal site involved in stabilizing RAD51 filaments, but not in loading RAD51 onto DNA, is essential for this fork protection but dispensable for HDR. RAD51 filament disruption in wild-type cells phenocopies BRCA2 deficiency. BRCA2 prevents chromosomal aberrations on replication stalling, which are alleviated by inhibition of MRE11, the nuclease responsible for this form of fork instability. Thus, BRCA2 prevents rather than repairs nucleolytic lesions at stalled replication forks to maintain genomic integrity and hence likely suppresses tumorigenesis through this replication-specific function.
Asunto(s)
Proteína BRCA2/metabolismo , Roturas del ADN de Doble Cadena , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Inestabilidad Genómica , Secuencia de Aminoácidos , Animales , Línea Celular , Supervivencia Celular , Reparación del ADN , Humanos , Proteína Homóloga de MRE11 , Datos de Secuencia Molecular , Alineación de SecuenciaRESUMEN
The nonrandom distribution of meiotic recombination influences patterns of inheritance and genome evolution, but chromosomal features governing this distribution are poorly understood. Formation of the DNA double-strand breaks (DSBs) that initiate recombination results in the accumulation of Spo11 protein covalently bound to small DNA fragments. By sequencing these fragments, we uncover a genome-wide DSB map of unprecedented resolution and sensitivity. We use this map to explore how DSB distribution is influenced by large-scale chromosome structures, chromatin, transcription factors, and local sequence composition. Our analysis offers mechanistic insight into DSB formation and early processing steps, supporting the view that the recombination terrain is molded by combinatorial and hierarchical interaction of factors that work on widely different size scales. This map illuminates the occurrence of DSBs in repetitive DNA elements, repair of which can lead to chromosomal rearrangements. We also discuss implications for evolutionary dynamics of recombination hot spots.
Asunto(s)
Genoma Fúngico , Saccharomyces cerevisiae/genética , Roturas del ADN de Doble Cadena , Endodesoxirribonucleasas/metabolismo , Estudio de Asociación del Genoma Completo , Recombinación Genética , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMEN
Sex chromosomes in males of most eutherian mammals share only a small homologous segment, the pseudoautosomal region (PAR), in which the formation of double-strand breaks (DSBs), pairing and crossing over must occur for correct meiotic segregation1,2. How cells ensure that recombination occurs in the PAR is unknown. Here we present a dynamic ultrastructure of the PAR and identify controlling cis- and trans-acting factors that make the PAR the hottest segment for DSB formation in the male mouse genome. Before break formation, multiple DSB-promoting factors hyperaccumulate in the PAR, its chromosome axes elongate and the sister chromatids separate. These processes are linked to heterochromatic mo-2 minisatellite arrays, and require MEI4 and ANKRD31 proteins but not the axis components REC8 or HORMAD1. We propose that the repetitive DNA sequence of the PAR confers unique chromatin and higher-order structures that are crucial for recombination. Chromosome synapsis triggers collapse of the elongated PAR structure and, notably, oocytes can be reprogrammed to exhibit spermatocyte-like levels of DSBs in the PAR simply by delaying or preventing synapsis. Thus, the sexually dimorphic behaviour of the PAR is in part a result of kinetic differences between the sexes in a race between the maturation of the PAR structure, formation of DSBs and completion of pairing and synapsis. Our findings establish a mechanistic paradigm for the recombination of sex chromosomes during meiosis.
Asunto(s)
Roturas del ADN de Doble Cadena , Meiosis , Regiones Pseudoautosómicas/genética , Regiones Pseudoautosómicas/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Ensamble y Desensamble de Cromatina , Emparejamiento Cromosómico/genética , Proteínas de Unión al ADN , Femenino , Heterocromatina/genética , Heterocromatina/metabolismo , Heterocromatina/ultraestructura , Cinética , Masculino , Meiosis/genética , Ratones , Repeticiones de Minisatélite/genética , Oocitos/metabolismo , Recombinación Genética/genética , Caracteres Sexuales , Intercambio de Cromátides Hermanas , Espermatocitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismoRESUMEN
Mutations in homologous recombination (HR) genes, including BRCA1, BRCA2, and the RAD51 paralog RAD51C, predispose to tumorigenesis and sensitize cancers to DNA-damaging agents and poly(ADP ribose) polymerase inhibitors. However, â¼800 missense variants of unknown significance have been identified for RAD51C alone, impairing cancer risk assessment and therapeutic strategies. Here, we interrogated >50 RAD51C missense variants, finding that mutations in residues conserved with RAD51 strongly predicted HR deficiency and disrupted interactions with other RAD51 paralogs. A cluster of mutations was identified in and around the Walker A box that led to impairments in HR, interactions with three other RAD51 paralogs, binding to single-stranded DNA, and ATP hydrolysis. We generated structural models of the two RAD51 paralog complexes containing RAD51C, RAD51B-RAD51C-RAD51D-XRCC2 and RAD51C-XRCC3. Together with our functional and biochemical analyses, the structural models predict ATP binding at the interface of RAD51C interactions with other RAD51 paralogs, similar to interactions between monomers in RAD51 filaments, and explain the failure of RAD51C variants in binding multiple paralogs. Ovarian cancer patients with variants in this cluster showed exceptionally long survival, which may be relevant to the reversion potential of the variants. This comprehensive analysis provides a framework for RAD51C variant classification. Importantly, it also provides insight into the functioning of the RAD51 paralog complexes.
Asunto(s)
Proteínas de Unión al ADN , Recombinación Homóloga , Neoplasias Ováricas , Recombinasa Rad51 , Proteínas Supresoras de Tumor , Adenosina Trifosfato/metabolismo , Proteínas de Unión al ADN/genética , Femenino , Humanos , Mutación , Neoplasias Ováricas/genética , Recombinasa Rad51/genética , Proteínas Supresoras de Tumor/genéticaRESUMEN
Genetic abnormalities are present in all tumor types, although the frequency and type can vary. Chromosome abnormalities include highly aberrant structures, particularly chromothriptic chromosomes. The generation of massive sequencing data has illuminated the scope of the mutational burden in cancer genomes, identifying patterns of mutations (mutation signatures), which have the potential to shed light on the relatedness and etiologies of cancers and impact therapy response. Some mutation patterns are clearly attributable to disruptions in pathways that maintain genomic integrity. Here we review recent advances in our understanding of genetic changes occurring in cancers and the roles of genome maintenance pathways.
Asunto(s)
Aberraciones Cromosómicas , Daño del ADN , Reparación del ADN , ADN/genética , Genoma , Mutación , Animales , Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Cromotripsis , ADN/biosíntesis , ADN/química , Resistencia a Antineoplásicos/genética , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/terapia , Fenotipo , TranscriptomaRESUMEN
The increasing complexity of different cell types revealed by single-cell analysis of tissues presents challenges in efficiently elucidating their functions. Here we show, using prostate as a model tissue, that primary organoids and freshly isolated epithelial cells can be CRISPR edited ex vivo using Cas9-sgRNA (guide RNA) ribotnucleoprotein complex technology, then orthotopically transferred in vivo into immunocompetent or immunodeficient mice to generate cancer models with phenotypes resembling those seen in traditional genetically engineered mouse models. Large intrachromosomal (â¼2 Mb) or multigenic deletions can be engineered efficiently without the need for selection, including in isolated subpopulations to address cell-of-origin questions.
Asunto(s)
Deleción Cromosómica , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Edición Génica/métodos , Próstata/citología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteína 9 Asociada a CRISPR/genética , Células Epiteliales , Genes Supresores de Tumor , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Organoides , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , ARN Guía de Kinetoplastida , Ribonucleoproteínas/genética , Regulador Transcripcional ERG/genética , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Meiotic recombination initiated by programmed double-strand breaks (DSBs) yields two types of interhomolog recombination products, crossovers and noncrossovers, but what determines whether a DSB will yield a crossover or noncrossover is not understood. In this study, we analyzed the influence of sex and chromosomal location on mammalian recombination outcomes by constructing fine-scale recombination maps in both males and females at two mouse hot spots located in different regions of the same chromosome. These include the most comprehensive maps of recombination hot spots in oocytes to date. One hot spot, located centrally on chromosome 1, behaved similarly in male and female meiosis: Crossovers and noncrossovers formed at comparable levels and ratios in both sexes. In contrast, at a distal hot spot, crossovers were recovered only in males even though noncrossovers were obtained at similar frequencies in both sexes. These findings reveal an example of extreme sex-specific bias in recombination outcome. We further found that estimates of relative DSB levels are surprisingly poor predictors of relative crossover frequencies between hot spots in males. Our results demonstrate that the outcome of mammalian meiotic recombination can be biased, that this bias can vary depending on location and cellular context, and that DSB frequency is not the only determinant of crossover frequency.
Asunto(s)
Meiosis/genética , Recombinación Genética , Animales , Mapeo Cromosómico , Roturas del ADN de Doble Cadena , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Factores SexualesRESUMEN
Mitotic homologous recombination promotes genome stability through the precise repair of DNA double-strand breaks and other lesions that are encountered during normal cellular metabolism and from exogenous insults. As a result, homologous recombination repair is essential during proliferative stages in development and during somatic cell renewal in adults to protect against cell death and mutagenic outcomes from DNA damage. Mutations in mammalian genes encoding homologous recombination proteins, including BRCA1, BRCA2 and PALB2, are associated with developmental abnormalities and tumorigenesis. Recent advances have provided a clearer understanding of the connections between these proteins and of the key steps of homologous recombination and DNA strand exchange.
Asunto(s)
Inestabilidad Genómica , Mitosis/genética , Neoplasias/genética , Recombinación Genética/genética , Animales , Roturas del ADN de Doble Cadena , Roturas del ADN de Cadena Simple , Reparación del ADN , Humanos , Modelos Biológicos , Neoplasias/patologíaRESUMEN
Breakpoint junctions of the chromosomal translocations that occur in human cancers display hallmarks of nonhomologous end-joining (NHEJ). In mouse cells, translocations are suppressed by canonical NHEJ (c-NHEJ) components, which include DNA ligase IV (LIG4), and instead arise from alternative NHEJ (alt-NHEJ). Here we used designer nucleases (ZFNs, TALENs, and CRISPR/Cas9) to introduce DSBs on two chromosomes to study translocation joining mechanisms in human cells. Remarkably, translocations were altered in cells deficient for LIG4 or its interacting protein XRCC4. Translocation junctions had significantly longer deletions and more microhomology, indicative of alt-NHEJ. Thus, unlike mouse cells, translocations in human cells are generated by c-NHEJ. Human cancer translocations induced by paired Cas9 nicks also showed a dependence on c-NHEJ, despite having distinct joining characteristics. These results demonstrate an unexpected and striking species-specific difference for common genomic rearrangements associated with tumorigenesis.
Asunto(s)
Reparación del ADN por Unión de Extremidades , ADN Ligasas/genética , Proteínas de Unión al ADN/genética , Desoxirribonucleasas/fisiología , Translocación Genética/genética , Animales , Cromosomas Humanos , ADN Ligasa (ATP) , Humanos , Ratones , Eliminación de Secuencia , Especificidad de la Especie , Células Tumorales CultivadasRESUMEN
Deficiency in several of the classical human RAD51 paralogs [RAD51B, RAD51C, RAD51D, XRCC2 and XRCC3] is associated with cancer predisposition and Fanconi anemia. To investigate their functions, isogenic disruption mutants for each were generated in non-transformed MCF10A mammary epithelial cells and in transformed U2OS and HEK293 cells. In U2OS and HEK293 cells, viable ablated clones were readily isolated for each RAD51 paralog; in contrast, with the exception of RAD51B, RAD51 paralogs are cell-essential in MCF10A cells. Underlining their importance for genomic stability, mutant cell lines display variable growth defects, impaired sister chromatid recombination, reduced levels of stable RAD51 nuclear foci, and hyper-sensitivity to mitomycin C and olaparib, with the weakest phenotypes observed in RAD51B-deficient cells. Altogether these observations underscore the contributions of RAD51 paralogs in diverse DNA repair processes, and demonstrate essential differences in different cell types. Finally, this study will provide useful reagents to analyze patient-derived mutations and to investigate mechanisms of chemotherapeutic resistance deployed by cancers.
Asunto(s)
Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Recombinación Homóloga/genética , Recombinasa Rad51/genética , Núcleo Celular/genética , Cromátides/genética , Daño del ADN/genética , Genoma Humano/genética , Células HEK293 , Humanos , MutaciónRESUMEN
Different organisms display widely different numbers of the programmed double-strand breaks (DSBs) that initiate meiotic recombination (e.g., hundreds per meiocyte in mice and humans vs. dozens in nematodes), but little is known about what drives these species-specific DSB set points or the regulatory pathways that control them. Here we examine male mice with a lowered dosage of SPO11, the meiotic DSB catalyst, to gain insight into the effect of reduced DSB numbers on mammalian chromosome dynamics. An approximately twofold DSB reduction was associated with the reduced ability of homologs to synapse along their lengths, provoking prophase arrest and, ultimately, sterility. In many spermatocytes, chromosome subsets displayed a mix of synaptic failure and synapsis with both homologous and nonhomologous partners ("chromosome tangles"). The X chromosome was nearly always involved in tangles, and small autosomes were involved more often than large ones. We conclude that homolog pairing requirements dictate DSB set points during meiosis. Importantly, our results reveal that karyotype is a key factor: Smaller autosomes and heteromorphic sex chromosomes become weak links when DSBs are reduced below a critical threshold. Unexpectedly, unsynapsed chromosome segments trapped in tangles displayed an elevated density of DSB markers later in meiotic prophase. The unsynapsed portion of the X chromosome in wild-type males also showed evidence that DSB numbers increased as prophase progressed. These findings point to the existence of a feedback mechanism that links DSB number and distribution with interhomolog interactions.