Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 300(3): 105781, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38395306

RESUMEN

A delicate balance between photon absorption for vision and the protection of photoreceptors from light damage is pivotal for ocular health. This equilibrium is governed by the light-absorbing 11-cis-retinylidene chromophore of visual pigments, which, upon bleaching, transforms into all-trans-retinal and undergoes regeneration through an enzymatic pathway, named the visual cycle. Chemical side reactions of retinaldehyde during the recycling process can generate by-products that may result in a depletion of retinoids. In our study, we have clarified the crucial roles played by melanin pigmentation and the retinoid transporter STRA6 in preventing this loss and preserving the integrity of the visual cycle. Our experiments initially confirmed that consecutive green and blue light bleaching of isolated bovine rhodopsin produced 9-cis and 13-cis retinal. The same unusual retinoids were found in the retinas of mice exposed to intense light, with elevated concentrations observed in albino mice. Examining the metabolic fate of these visual cycle byproducts revealed that 9-cis-retinal, but not 13-cis-retinal, was recycled back to all-trans-retinal through an intermediate called isorhodopsin. However, investigations in Stra6 knockout mice unveiled that the generation of these visual cycle byproducts correlated with a light-induced loss of ocular retinoids and visual impairment. Collectively, our findings uncover important novel aspects of visual cycle dynamics, with implications for ocular health and photoreceptor integrity.


Asunto(s)
Proteínas de la Membrana , Retinoides , Animales , Bovinos , Ratones , Diterpenos , Ratones Noqueados , Retina/metabolismo , Retinaldehído/metabolismo , Retinoides/metabolismo , Visión Ocular , Proteínas de la Membrana/metabolismo
2.
Hum Mol Genet ; 31(20): 3439-3457, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-35642742

RESUMEN

The correct expression of folded, functional rhodopsin (Rho) is critical for visual perception. However, this seven-transmembrane helical G protein-coupled receptor is prone to mutations with pathological consequences of retinal degeneration in retinitis pigmentosa (RP) due to Rho misfolding. Pharmacological chaperones that stabilize the inherited Rho variants by assisting their folding and membrane targeting could slow the progression of RP. In this study, we employed virtual screening of synthetic compounds with a natural product scaffold in conjunction with in vitro and in vivo evaluations to discover a novel chromenone-containing small molecule with favorable pharmacological properties that stabilize rod opsin. This compound reversibly binds to unliganded bovine rod opsin with an EC50 value comparable to the 9-cis-retinal chromophore analog and partially rescued membrane trafficking of multiple RP-related rod opsin variants in vitro. Importantly, this novel ligand of rod opsin was effective in vivo in murine models, protecting photoreceptors from deterioration caused by either bright light or genetic insult. Together, our current study suggests potential broad therapeutic implications of the new chromenone-containing non-retinoid small molecule against retinal diseases associated with photoreceptor degeneration.


Asunto(s)
Productos Biológicos , Degeneración Retiniana , Retinitis Pigmentosa , Animales , Productos Biológicos/uso terapéutico , Bovinos , Ligandos , Ratones , Receptores Acoplados a Proteínas G , Degeneración Retiniana/tratamiento farmacológico , Degeneración Retiniana/genética , Degeneración Retiniana/patología , Retinitis Pigmentosa/tratamiento farmacológico , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/metabolismo , Rodopsina/genética , Rodopsina/metabolismo , Opsinas de Bastones/genética
3.
Hum Mol Genet ; 31(4): 548-560, 2022 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-34508587

RESUMEN

The retinal pigment epithelium of the vertebrate eyes acquires vitamin A from circulating retinol binding protein for chromophore biosynthesis. The chromophore covalently links with an opsin protein in the adjacent photoreceptors of the retina to form the bipartite visual pigment complexes. We here analyzed visual pigment biosynthesis in mice deficient for the retinol-binding protein receptor STRA6. We observed that chromophore content was decreased throughout the life cycle of these animals, indicating that lipoprotein-dependent delivery pathways for the vitamin cannot substitute for STRA6. Changes in the expression of photoreceptor marker genes, including a downregulation of the genes encoding rod and cone opsins, paralleled the decrease in ocular retinoid concentration in STRA6-deficient mice. Despite this adaptation, cone photoreceptors displayed absent or mislocalized opsins at all ages examined. Rod photoreceptors entrapped the available chromophore but exhibited significant amounts of chromophore-free opsins in the dark-adapted stage. Treatment of mice with pharmacological doses of vitamin A ameliorated the rod phenotype but did not restore visual pigment synthesis in cone photoreceptors of STRA6-deficient mice. The imbalance between chromophore and opsin concentrations of rod and cone photoreceptors was associated with an unfavorable retinal physiology, including diminished electrical responses of photoreceptors to light, and retinal degeneration during aging. Together, our study demonstrates that STRA6 is critical to adjust the stoichiometry of chromophore and opsins in rod and cone photoreceptors and to prevent pathologies associated with ocular vitamin A deprivation.


Asunto(s)
Opsinas de los Conos , Pigmentos Retinianos , Animales , Opsinas de los Conos/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Opsinas/genética , Células Fotorreceptoras Retinianas Conos/metabolismo , Pigmentos Retinianos/metabolismo , Retinaldehído/metabolismo , Opsinas de Bastones/metabolismo , Vitamina A/metabolismo
4.
J Biol Chem ; 298(8): 102266, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35850308

RESUMEN

Over 100 mutations in the rhodopsin gene have been linked to a spectrum of retinopathies that include retinitis pigmentosa and congenital stationary night blindness. Though most of these variants exhibit a loss of function, the molecular defects caused by these underlying mutations vary considerably. In this work, we utilize deep mutational scanning to quantitatively compare the plasma membrane expression of 123 known pathogenic rhodopsin variants in the presence and absence of the stabilizing cofactor 9-cis-retinal. We identify 69 retinopathy variants, including 20 previously uncharacterized variants, that exhibit diminished plasma membrane expression in HEK293T cells. Of these apparent class II variants, 67 exhibit a measurable increase in expression in the presence of 9-cis-retinal. However, the magnitude of the response to this molecule varies considerably across this spectrum of mutations. Evaluation of the observed shifts relative to thermodynamic estimates for the coupling between binding and folding suggests underlying differences in stability constrains the magnitude of their response to retinal. Nevertheless, estimates from computational modeling suggest that many of the least sensitive variants also directly compromise binding. Finally, we evaluate the functional properties of three previous uncharacterized, retinal-sensitive variants (ΔN73, S131P, and R135G) and show that two of these retain residual function in vitro. Together, our results provide a comprehensive experimental characterization of the proteostatic properties of retinopathy variants and their response to retinal.


Asunto(s)
Enfermedades Hereditarias del Ojo , Rodopsina , Diterpenos/farmacología , Resistencia a Medicamentos/genética , Enfermedades Hereditarias del Ojo/genética , Células HEK293 , Humanos , Mutación , Retinaldehído/farmacología , Rodopsina/efectos de los fármacos , Rodopsina/genética , Rodopsina/metabolismo
5.
Pharmacol Res ; 188: 106675, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36693600

RESUMEN

The neuropeptide galanin receptor 3 (GALR3) is a class A G protein-coupled receptor (GPCR) broadly expressed in the nervous system, including the retina. GALR3 is involved in the modulation of immune and inflammatory responses. Tight control of these processes is critical for maintaining homeostasis in the retina and is required to sustain vision. Here, we investigated the role of GALR3 in retina pathologies triggered by bright light and P23H mutation in the rhodopsin (RHO) gene, associated with the activation of oxidative stress and inflammatory responses. We used a multiphase approach involving pharmacological inhibition of GALR3 with its antagonist SNAP-37889 and genetic depletion of GALR3 to modulate the GALR3 signaling. Our in vitro experiments in the retinal pigment epithelium-derived cells (ARPE19) susceptible to all-trans-retinal toxicity indicated that GALR3 could be involved in the cellular stress response to this phototoxic product. Indeed, blocking the GALR3 signaling in Abca4-/-/Rdh8-/- and wild-type Balb/cJ mice, sensitive to bright light-induced retina damage, protected retina health in these mice exposed to light. The retina morphology and function were substantially improved, and stress response processes were reduced in these mouse models compared to the controls. Furthermore, in P23H Rho knock-in mice, a model of retinitis pigmentosa (RP), both pharmacological inhibition and genetic ablation of GALR3 prolonged the survival of photoreceptors. These results indicate that GALR3 signaling contributes to acute light-induced and chronic RP-linked retinopathies. Together, this work provides the pharmacological knowledge base to evaluate GALR3 as a potential target for developing novel therapies to combat retinal degeneration.


Asunto(s)
Degeneración Retiniana , Retinitis Pigmentosa , Ratones , Animales , Degeneración Retiniana/tratamiento farmacológico , Degeneración Retiniana/genética , Receptor de Galanina Tipo 3/genética , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/patología , Retina/patología , Mutación , Modelos Animales de Enfermedad , Transportadoras de Casetes de Unión a ATP/genética
6.
J Biol Chem ; 297(6): 101359, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34756884

RESUMEN

Membrane protein variants with diminished conformational stability often exhibit enhanced cellular expression at reduced growth temperatures. The expression of "temperature-sensitive" variants is also typically sensitive to corrector molecules that bind and stabilize the native conformation. There are many examples of temperature-sensitive rhodopsin variants, the misfolding of which is associated with the molecular basis of retinitis pigmentosa. In this work, we employ deep mutational scanning to compare the effects of reduced growth temperature and 9-cis-retinal, an investigational corrector, on the plasma membrane expression of 700 rhodopsin variants in HEK293T cells. We find that the change in expression at reduced growth temperatures correlates with the response to 9-cis-retinal among variants bearing mutations within a hydrophobic transmembrane domain (TM2). The most sensitive variants appear to disrupt a native helical kink within this transmembrane domain. By comparison, mutants that alter the structure of a polar transmembrane domain (TM7) exhibit weaker responses to temperature and retinal that are poorly correlated. Statistical analyses suggest that this observed insensitivity cannot be attributed to a single variable, but likely arises from the composite effects of mutations on the energetics of membrane integration, the stability of the native conformation, and the integrity of the retinal-binding pocket. Finally, we show that the characteristics of purified temperature- and retinal-sensitive variants suggest that the proteostatic effects of retinal may be manifested during translation and cotranslational folding. Together, our findings highlight several biophysical constraints that appear to influence the sensitivity of genetic variants to temperature and small-molecule correctors.


Asunto(s)
Mutación , Retinaldehído/metabolismo , Rodopsina/metabolismo , Células HEK293 , Humanos , Rodopsina/genética , Temperatura
7.
J Neurosci Res ; 100(4): 1063-1083, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35165923

RESUMEN

The balanced homeostasis of the G protein-coupled receptor (GPCR), rhodopsin (Rho), is required for vision. Misfolding mutations in Rho cause photoreceptor death, leading to retinitis pigmentosa (RP) and consequently blindness. With no cure currently available, the development of efficient therapy for RP is an urgent need. Pharmacological supplementation with molecular chaperones, including flavonoids, improves stability, folding, and membrane targeting of the RP Rho mutants in vitro. Thus, we hypothesized that flavonoids by binding to P23H Rho and enhancing its conformational stability could mitigate detrimental effects of this mutation on retinal health. In this work, we evaluated the pharmacological potential of two model flavonoids, quercetin and myricetin, by using in silico, in vitro, and in vivo models of P23H Rho. Our computational analysis showed that quercetin could interact within the orthosteric binding pocket of P23H Rho and shift the conformation of its N-terminal loop toward the wild type (WT)-like state. Quercetin added to the NIH-3T3 cells stably expressing P23H Rho increased the stability of this receptor and improved its function. Systemic administration of quercetin to P23H Rho knock-in mice substantially improved retinal morphology and function, which was associated with an increase in levels of Rho and cone opsins. In addition, treatment with quercetin resulted in downregulation of the UPR signaling and oxidative stress-related markers. This study unravels the pharmacological potential of quercetin to slow down the progression of photoreceptor death in Rho-related RP and highlights its prospective as a lead compound to develop a novel therapeutic remedy to counter RP pathology.


Asunto(s)
Retinitis Pigmentosa , Rodopsina , Animales , Modelos Animales de Enfermedad , Ratones , Mutación , Estudios Prospectivos , Quercetina/metabolismo , Quercetina/farmacología , Quercetina/uso terapéutico , Retina/metabolismo , Retinitis Pigmentosa/tratamiento farmacológico , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/metabolismo , Rodopsina/genética , Rodopsina/metabolismo
8.
Adv Exp Med Biol ; 1371: 61-77, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34962636

RESUMEN

Retinitis pigmentosa (RP) is a group of hereditary degenerative diseases affecting 1 of 4000 people worldwide and being the most prevalent cause of visual handicap among working populations in developed countries. These disorders are mainly related to the abnormalities in the rod G protein-coupled receptor (GPCR), rhodopsin reflected in the dysregulated membrane trafficking, stability and phototransduction processes that lead to progressive loss of retina function and eventually blindness. Currently, there is no cure for RP, and the therapeutic options are limited. Targeting rhodopsin with small molecule chaperones to improve the folding and stability of the mutant receptor is one of the most promising pharmacological approaches to alleviate the pathology of RP. This review provides an update on the current knowledge regarding small molecule compounds that have been evaluated as rhodopsin modulators to be considered as leads for the development of novel therapies for RP.


Asunto(s)
Retinitis Pigmentosa , Rodopsina , Proteínas Portadoras , Humanos , Chaperonas Moleculares , Mutación , Receptores Acoplados a Proteínas G/genética , Retinitis Pigmentosa/tratamiento farmacológico , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/patología , Rodopsina/genética , Rodopsina/metabolismo
9.
Mol Pharmacol ; 99(1): 60-77, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33154094

RESUMEN

Degeneration of photoreceptors caused by excessive illumination, inherited mutations, or aging is the principal pathology of blinding diseases. Pharmacological compounds that stabilize the visual receptor rhodopsin and modulate the cellular pathways triggering death of photoreceptors could avert this pathology. Interestingly, flavonoids can modulate the cellular processes, such as oxidative stress, inflammatory responses, and apoptosis, that are activated during retinal degeneration. As we found previously, flavonoids also bind directly to unliganded rod opsin, enhancing its folding, stability, and regeneration. In addition, flavonoids stimulate rhodopsin gene expression. Thus, we evaluated the effect of two main dietary flavonoids, quercetin and myricetin, in ATP-binding cassette subfamily A member 4 -/- /retinol dehydrogenase 8 -/- and wild-type BALB/c mice susceptible to light-induced photoreceptor degeneration. Using in vivo imaging, such as optical coherence tomography, scanning laser ophthalmoscopy, and histologic assessment of retinal morphology, we found that treatment with these flavonoids prior to light insult remarkably protected retina from deterioration and preserved its function. Using high-performance liquid chromatography-mass spectrometry analysis, we detected these flavonoids in the eye upon their intraperitoneal administration. The molecular events associated with the protective effect of quercetin and myricetin were related to the elevated expression of photoreceptor-specific proteins, rhodopsin and cone opsins, decreased expression of the specific inflammatory markers, and the shift of the equilibrium between cell death regulators BCL2-associated X protein (BAX) and B-cell lymphoma 2 toward an antiapoptotic profile. These results were confirmed in photoreceptor-derived 661W cells treated with either H2O2 or all-trans-retinal stressors implicated in the mechanism of retinal degeneration. Altogether, flavonoids could have significant prophylactic value for retinal degenerative diseases. SIGNIFICANCE STATEMENT: Flavonoids commonly present in food exhibit advantageous effects in blinding diseases. They bind to and stabilize unliganded rod opsin, which in excess accelerates degenerative processes in the retina. Additionally, flavonoids enhance the expression of the visual receptors, rod and cone opsins; inhibit the inflammatory reactions; and induce the expression of antiapoptotic markers in the retina, preventing the degeneration in vivo. Thus, flavonoids could have a prophylactic value for retinal degenerative diseases.


Asunto(s)
Flavonoides/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Estimulación Luminosa/efectos adversos , Degeneración Retiniana/patología , Degeneración Retiniana/prevención & control , Animales , Electrorretinografía/métodos , Femenino , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Degeneración Retiniana/etiología
10.
J Neurosci ; 39(2): 212-223, 2019 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-30459230

RESUMEN

Bleaching adaptation in rod photoreceptors is mediated by apo-opsin, which activates phototransduction with effective activity 105- to 106-fold lower than that of photoactivated rhodopsin (meta II). However, the mechanism that produces such low opsin activity is unknown. To address this question, we sought to record single opsin responses in mouse rods. We used mutant mice lacking efficient calcium feedback to boosts rod responses and generated a small fraction of opsin by photobleaching ∼1% of rhodopsin. The bleach produced a dramatic increase in the frequency of discrete photoresponse-like events. This activity persisted for hours, was quenched by 11-cis-retinal, and was blocked by uncoupling opsin from phototransduction, all indicating opsin as its source. Opsin-driven discrete activity was also observed in rods containing non-activatable rhodopsin, ruling out transactivation of rhodopsin by opsin. We conclude that bleaching adaptation is mediated by opsin that exists in equilibrium between a predominant inactive and a rare meta II-like state.SIGNIFICANCE STATEMENT Electrophysiological analysis is used to show that the G-protein-coupled receptor opsin exists in equilibrium between a predominant inactive and a rare highly active state that mediates bleaching adaptation in photoreceptors.


Asunto(s)
Opsinas de Bastones/fisiología , Animales , Señalización del Calcio/genética , Femenino , Fototransducción/genética , Fototransducción/fisiología , Masculino , Ratones , Ratones Noqueados , Mutación , Fotoblanqueo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Retinaldehído/química , Rodopsina/química , Rodopsina/genética , Rodopsina/fisiología , Opsinas de Bastones/química , Opsinas de Bastones/genética , cis-trans-Isomerasas/genética , cis-trans-Isomerasas/fisiología
11.
J Biol Chem ; 294(20): 8101-8122, 2019 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-30944172

RESUMEN

Rhodopsin (Rho) is a visual G protein-coupled receptor expressed in the rod photoreceptors of the eye, where it mediates transmission of a light signal into a cell and converts this signal into a nerve impulse. More than 100 mutations in Rho are linked to various ocular impairments, including retinitis pigmentosa (RP). Accordingly, much effort has been directed toward developing ligands that target Rho and improve its folding and stability. Natural compounds may provide another viable approach to such drug discovery efforts. The dietary polyphenol compounds, ubiquitously present in fruits and vegetables, have beneficial effects in several eye diseases. However, the underlying mechanism of their activity is not fully understood. In this study, we used a combination of computational methods, biochemical and biophysical approaches, including bioluminescence resonance energy transfer, and mammalian cell expression systems to clarify the effects of four common bioactive flavonoids (quercetin, myricetin, and their mono-glycosylated forms quercetin-3-rhamnoside and myricetrin) on rod opsin stability, function, and membrane organization. We observed that by directly interacting with ligand-free opsin, flavonoids modulate its conformation, thereby causing faster entry of the retinal chromophore into its binding pocket. Moreover, flavonoids significantly increased opsin stability, most likely by introducing structural rigidity and promoting receptor self-association within the biological membranes. Of note, the binding of flavonoids to an RP-linked P23H opsin variant partially restored its normal cellular trafficking. Together, our results suggest that flavonoids could be utilized as lead compounds in the development of effective nonretinoid therapeutics for managing RP-related retinopathies.


Asunto(s)
Flavonoides , Pliegue de Proteína/efectos de los fármacos , Rodopsina , Animales , Sitios de Unión , Bovinos , Línea Celular , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Flavonoides/química , Flavonoides/farmacología , Estabilidad Proteica , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/genética , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/metabolismo , Rodopsina/química , Rodopsina/genética , Rodopsina/metabolismo
12.
J Biol Chem ; 294(15): 6082-6093, 2019 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-30770468

RESUMEN

The variable composition of the chromophore-binding pocket in visual receptors is essential for vision. The visual phototransduction starts with the cis-trans isomerization of the retinal chromophore upon absorption of photons. Despite sharing the common 11-cis-retinal chromophore, rod and cone photoreceptors possess distinct photochemical properties. Thus, a detailed molecular characterization of the chromophore-binding pocket of these receptors is critical to understanding the differences in the photochemistry of vision between rods and cones. Unlike for rhodopsin (Rh), the crystal structures of cone opsins remain to be determined. To obtain insights into the specific chromophore-protein interactions that govern spectral tuning in human visual pigments, here we harnessed the unique binding properties of 11-cis-6-membered-ring-retinal (11-cis-6mr-retinal) with human blue, green, and red cone opsins. To unravel the specificity of the chromophore-binding pocket of cone opsins, we applied 11-cis-6mr-retinal analog-binding analyses to human blue, green, and red cone opsins. Our results revealed that among the three cone opsins, only blue cone opsin can accommodate the 11-cis-6mr-retinal in its chromophore-binding pocket, resulting in the formation of a synthetic blue pigment (B6mr) that absorbs visible light. A combination of primary sequence alignment, molecular modeling, and mutagenesis experiments revealed the specific amino acid residue 6.48 (Tyr-262 in blue cone opsins and Trp-281 in green and red cone opsins) as a selectivity filter in human cone opsins. Altogether, the results of our study uncover the molecular basis underlying the binding selectivity of 11-cis-6mr-retinal to the cone opsins.


Asunto(s)
Opsinas de los Conos/química , Modelos Moleculares , Retinaldehído/química , Opsinas de los Conos/genética , Opsinas de los Conos/metabolismo , Células HEK293 , Humanos , Unión Proteica , Retinaldehído/metabolismo
13.
Intervirology ; 63(1-6): 2-9, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33099545

RESUMEN

BACKGROUND: The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its disease CO-VID-19 has strongly encouraged the search for antiviral compounds. Most of the evaluated drugs against SARS-CoV-2 derive from drug repurposing of Food and Drug Administration-approved molecules. These drugs have as target three major processes: (1) early stages of virus-cell interaction, (2) viral proteases, and (3) the viral RNA-dependent RNA polymerase. SUMMARY: This review focused on the basic principles of virology and pharmacology to understand the importance of early stages of virus-cell interaction as therapeutic targets and other main processes vital for SARS-CoV-2 replication. Furthermore, we focused on describing the main targets associated with SARS-CoV-2 antiviral therapy and the rationale of drug combinations for efficiently suppressing viral replication. Key Messages: We hypothesized that blocking of both entry mechanisms could allow a more effective antiviral effect compared to the partial results obtained with chloroquine or its derivatives alone. This approach, already used to achieve an antiviral effect higher than that offered by every single drug administered separately, has been successfully applied in several viral infections such as HIV and HCV. This review will contribute to expanding the perception of the possible therapeutic targets in SARS-CoV-2 infection and highlight the benefits of using combination therapies.


Asunto(s)
Antivirales/farmacología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Replicación Viral/efectos de los fármacos , COVID-19/virología , Ensayos Clínicos como Asunto , Diseño de Fármacos , Quimioterapia Combinada , Interacciones Microbiota-Huesped/efectos de los fármacos , Humanos , Internalización del Virus/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
14.
Proc Natl Acad Sci U S A ; 114(13): E2608-E2615, 2017 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-28289214

RESUMEN

Vertebrate rhodopsin (Rh) contains 11-cis-retinal as a chromophore to convert light energy into visual signals. On absorption of light, 11-cis-retinal is isomerized to all-trans-retinal, constituting a one-way reaction that activates transducin (Gt) followed by chromophore release. Here we report that bovine Rh, regenerated instead with a six-carbon-ring retinal chromophore featuring a C11=C12 double bond locked in its cis conformation (Rh6mr), employs an atypical isomerization mechanism by converting 11-cis to an 11,13-dicis configuration for prolonged Gt activation. Time-dependent UV-vis spectroscopy, HPLC, and molecular mechanics analyses revealed an atypical thermal reisomerization of the 11,13-dicis to the 11-cis configuration on a slow timescale, which enables Rh6mr to function in a photocyclic manner similar to that of microbial Rhs. With this photocyclic behavior, Rh6mr repeatedly recruits and activates Gt in response to light stimuli, making it an excellent candidate for optogenetic tools based on retinal analog-bound vertebrate Rhs. Overall, these comprehensive structure-function studies unveil a unique photocyclic mechanism of Rh activation by an 11-cis-to-11,13-dicis isomerization.


Asunto(s)
Rodopsina/química , Animales , Bovinos , Cromatografía Líquida de Alta Presión , Isomerismo , Procesos Fotoquímicos , Rodopsina/fisiología , Rodopsina/efectos de la radiación
15.
J Am Chem Soc ; 141(1): 204-215, 2019 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-30537820

RESUMEN

Membrane proteins are prone to misfolding and degradation within the cell, yet the nature of the conformational defects involved in this process remain poorly understood. The earliest stages of membrane protein folding are mediated by the Sec61 translocon, a molecular machine that facilitates the lateral partitioning of the polypeptide into the membrane. Proper membrane integration is an essential prerequisite for folding of the nascent chain. However, the marginal energetic drivers of this reaction suggest the translocon may operate with modest fidelity. In this work, we employed biophysical modeling in conjunction with quantitative biochemical measurements in order to evaluate the extent to which cotranslational folding defects influence membrane protein homeostasis. Protein engineering was employed to selectively perturb the topological energetics of human rhodopsin, and the expression and cellular trafficking of engineered variants were quantitatively compared. Our results reveal clear relationships between topological energetics and the efficiency of rhodopsin biogenesis, which appears to be limited by the propensity of a polar transmembrane domain to achieve its correct topological orientation. Though the polarity of this segment is functionally constrained, we find that its topology can be stabilized in a manner that enhances biogenesis without compromising the functional properties of rhodopsin. Furthermore, sequence alignments reveal this topological instability has been conserved throughout the course of evolution. These results suggest that topological defects significantly contribute to the inefficiency of membrane protein folding in the cell. Additionally, our findings suggest that the marginal stability of rhodopsin may represent an evolved trait.


Asunto(s)
Pliegue de Proteína , Proteostasis , Rodopsina/biosíntesis , Rodopsina/química , Humanos , Modelos Moleculares , Conformación Proteica , Ingeniería de Proteínas , Rodopsina/genética , Rodopsina/metabolismo , Termodinámica
16.
Int J Mol Sci ; 20(24)2019 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-31835521

RESUMEN

G protein-coupled receptors (GPCRs) play a predominant role in the drug discovery effort. These cell surface receptors are activated by a variety of specific ligands that bind to the orthosteric binding pocket located in the extracellular part of the receptor. In addition, the potential binding sites located on the surface of the receptor enable their allosteric modulation with critical consequences for their function and pharmacology. For decades, drug discovery focused on targeting the GPCR orthosteric binding sites. However, finding that GPCRs can be modulated allosterically opened a new venue for developing novel pharmacological modulators with higher specificity. Alternatively, focus on discovering of non-retinoid small molecules beneficial in retinopathies associated with mutations in rhodopsin is currently a fast-growing pharmacological field. In this review, we summarize the accumulated knowledge on retinoid ligands and non-retinoid modulators of the light-sensing GPCR, rhodopsin and their potential in combating the specific vision-related pathologies. Also, recent findings reporting the potential of biologically active compounds derived from natural products as potent rod opsin modulators with beneficial effects against degenerative diseases related to this receptor are highlighted here.


Asunto(s)
Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Regulación Alostérica/efectos de los fármacos , Animales , Sitios de Unión , Descubrimiento de Drogas , Humanos , Ligandos , Modelos Moleculares , Receptores Acoplados a Proteínas G/efectos de los fármacos
17.
Biochemistry ; 57(35): 5188-5201, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30085663

RESUMEN

G protein-coupled receptors can exist as dimers and higher-order oligomers in biological membranes. The specific oligomeric assembly of these receptors is believed to play a major role in their function, and the disruption of native oligomers has been implicated in specific human pathologies. Computational predictions and biochemical analyses suggest that two molecules of rhodopsin (Rho) associate through the interactions involving its fifth transmembrane helix (TM5). Interestingly, there are several pathogenic loss-of-function mutations within TM5 that face the lipid bilayer in a manner that could potentially influence the dimerization of Rho. Though several of these mutations are known to induce misfolding, the pathogenic defects associated with V209M and F220C Rho remain unclear. In this work, we utilized a variety of biochemical and biophysical approaches to elucidate the effects of these mutations on the dimerization, folding, trafficking, and function of Rho in relation to other pathogenic TM5 variants. Chemical cross-linking, bioluminescence energy transfer, and pulsed-interleaved excitation fluorescence cross-correlation spectroscopy experiments revealed that each of these mutants exhibits a wild type-like propensity to self-associate within the plasma membrane. However, V209M and F220C each exhibit subtle defects in cellular trafficking. Together, our results suggest that the RP pathology associated with the expression of the V209M and F220C mutants could arise from defects in folding and cellular trafficking rather than the disruption of dimerization, as has been previously proposed.


Asunto(s)
Mutación , Multimerización de Proteína , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/patología , Rodopsina/genética , Rodopsina/metabolismo , Secuencia de Aminoácidos , Membrana Celular/metabolismo , Células HEK293 , Humanos , Conformación Proteica , Transporte de Proteínas , Rodopsina/química , Homología de Secuencia
18.
Mol Pharmacol ; 94(4): 1132-1144, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30018116

RESUMEN

Continuous regeneration of the 11-cis-retinal visual chromophore from all-trans-retinal is critical for vision. Insufficiency of 11-cis-retinal arising from the dysfunction of key proteins involved in its regeneration can impair retinal health, ultimately leading to loss of human sight. Delayed recovery of visual sensitivity and night blindness caused by inadequate regeneration of the visual pigment rhodopsin are typical early signs of this condition. Excessive concentrations of unliganded, constitutively active opsin and increased levels of all-trans-retinal and its byproducts in photoreceptors also accelerate retinal degeneration after light exposure. Exogenous 9-cis-retinal iso-chromophore can reduce the toxicity of ligand-free opsin but fails to prevent the buildup of retinoid photoproducts when their clearance is defective in human retinopathies, such as Stargardt disease or age-related macular degeneration. Here we evaluated the effect of a locked chromophore analog, 11-cis-6-membered ring-retinal against bright light-induced retinal degeneration in Abca4-/-Rdh8-/- mice. Using in vivo imaging techniques, optical coherence tomography, scanning laser ophthalmoscopy, and two-photon microscopy, along with in vitro histologic analysis of retinal morphology, we found that treatment with 11-cis-6-membered ring-retinal before light stimulation prevented rod and cone photoreceptor degradation and preserved functional acuity in these mice. Moreover, additive accumulation of 11-cis-6-membered ring-retinal measured in the eyes of these mice by quantitative liquid chromatography-mass spectrometry indicated stable binding of this retinoid to opsin. Together, these results suggest that eliminating excess of unliganded opsin can prevent light-induced retinal degeneration in Abca4-/-Rdh8-/- mice.


Asunto(s)
Sustancias Protectoras/farmacología , Retina/efectos de los fármacos , Degeneración Retiniana/tratamiento farmacológico , Transportadoras de Casetes de Unión a ATP/metabolismo , Oxidorreductasas de Alcohol/metabolismo , Animales , Diterpenos , Luz , Degeneración Macular/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Opsinas/metabolismo , Retina/metabolismo , Retinaldehído/metabolismo , Retinoides/metabolismo
19.
Mol Pharmacol ; 93(5): 438-452, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29453250

RESUMEN

The retinoid (visual) cycle consists of a series of biochemical reactions needed to regenerate the visual chromophore 11-cis-retinal and sustain vision. Genetic or environmental factors affecting chromophore production can lead to blindness. Using animal models that mimic human retinal diseases, we previously demonstrated that mechanism-based pharmacological interventions can maintain vision in otherwise incurable genetic diseases of the retina. Here, we report that after 9-cis-retinal administration to lecithin:retinol acyltransferase-deficient (Lrat-/- ) mice, the drug was rapidly absorbed and then cleared within 1 to 2 hours. However, when conjugated to form chitosan-9-cis-retinal, this prodrug was slowly absorbed from the gastrointestinal tract, resulting in sustainable plasma levels of 9-cis-retinol and recovery of visual function without causing elevated levels, as occurs with unconjugated drug treatment. Administration of chitosan-9-cis-retinal conjugate intravitreally in retinal pigment epithelium-specific 65 retinoid isomerase (RPE65)-deficient dogs improved photoreceptor function as assessed by electroretinography. Functional rescue was dose dependent and maintained for several weeks. Dosing via the gastrointestinal tract in canines was found ineffective, most likely due to peculiarities of vitamin A blood transport in canines. Use of the chitosan conjugate in combination with 11-cis-6-ring-retinal, a locked ring analog of 11-cis-retinal that selectively blocks rod opsin consumption of chromophore while largely sparing cone opsins, was found to prolong cone vision in Lrat-/- mice. Development of such combination low-dose regimens to selectively prolong useful cone vision could not only expand retinal disease treatments to include Leber congenital amaurosis but also the age-related decline in human dark adaptation from progressive retinoid cycle deficiency.


Asunto(s)
Ceguera/terapia , Quitosano/administración & dosificación , Quitosano/química , Células Fotorreceptoras de Vertebrados/efectos de los fármacos , Retinaldehído/administración & dosificación , Retinaldehído/química , Aciltransferasas/genética , Administración Oral , Animales , Quitosano/farmacología , Opsinas de los Conos/metabolismo , Modelos Animales de Enfermedad , Diterpenos , Perros , Relación Dosis-Respuesta a Droga , Electrorretinografía , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Opsinas/metabolismo , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/efectos de los fármacos , Epitelio Pigmentado de la Retina/metabolismo , Retinaldehído/farmacología , Opsinas de Bastones/metabolismo , Tomografía de Coherencia Óptica
20.
J Biol Chem ; 292(26): 10983-10997, 2017 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-28487362

RESUMEN

Phototransduction is initiated when the absorption of light converts the 11-cis-retinal chromophore to its all-trans configuration in both rod and cone vertebrate photoreceptors. To sustain vision, 11-cis-retinal is continuously regenerated from its all-trans conformation through a series of enzymatic steps comprising the "visual or retinoid" cycle. Abnormalities in this cycle can compromise vision because of the diminished supply of 11-cis-retinal and the accumulation of toxic, constitutively active opsin. As shown previously for rod cells, attenuation of constitutively active opsin can be achieved with the unbleachable analogue, 11-cis-6-membered ring (11-cis-6mr)-retinal, which has therapeutic effects against certain degenerative retinal diseases. However, to discern the molecular mechanisms responsible for this action, pigment regeneration with this locked retinal analogue requires delineation also in cone cells. Here, we compared the regenerative properties of rod and green cone opsins with 11-cis-6mr-retinal and demonstrated that this retinal analogue could regenerate rod pigment but not green cone pigment. Based on structural modeling suggesting that Pro-205 in green cone opsin could prevent entry and binding of 11-cis-6mr-retinal, we initially mutated this residue to Ile, the corresponding residue in rhodopsin. However, this substitution did not enable green cone opsin to regenerate with 11-cis-6mr-retinal. Interestingly, deletion of 16 N-terminal amino acids in green cone opsin partially restored the binding of 11-cis-6mr-retinal. These results and our structural modeling indicate that a more complex binding pathway determines the regeneration of mammalian green cone opsin with chromophore analogues such as 11-cis-6mr-retinal.


Asunto(s)
Modelos Moleculares , Opsinas/química , Retinaldehído/química , Animales , Humanos , Opsinas/genética , Opsinas/metabolismo , Retinaldehído/genética , Retinaldehído/metabolismo , Células Sf9 , Spodoptera
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA