Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Plant J ; 112(4): 1029-1050, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36178149

RESUMEN

Flowering of the reference legume Medicago truncatula is promoted by winter cold (vernalization) followed by long-day photoperiods (VLD) similar to winter annual Arabidopsis. However, Medicago lacks FLC and CO, key regulators of Arabidopsis VLD flowering. Most plants have two INHIBITOR OF GROWTH (ING) genes (ING1 and ING2), encoding proteins with an ING domain with two anti-parallel alpha-helices and a plant homeodomain (PHD) finger, but their genetic role has not been previously described. In Medicago, Mting1 gene-edited mutants developed and flowered normally, but an Mting2-1 Tnt1 insertion mutant and gene-edited Mting2 mutants had developmental abnormalities including delayed flowering particularly in VLD, compact architecture, abnormal leaves with extra leaflets but no trichomes, and smaller seeds and barrels. Mting2 mutants had reduced expression of activators of flowering, including the FT-like gene MtFTa1, and increased expression of the candidate repressor MtTFL1c, consistent with the delayed flowering of the mutant. MtING2 overexpression complemented Mting2-1, but did not accelerate flowering in wild type. The MtING2 PHD finger bound H3K4me2/3 peptides weakly in vitro, but analysis of gene-edited mutants indicated that it was dispensable to MtING2 function in wild-type plants. RNA sequencing experiments indicated that >7000 genes are mis-expressed in the Mting2-1 mutant, consistent with its strong mutant phenotypes. Interestingly, ChIP-seq analysis identified >5000 novel H3K4me3 locations in the genome of Mting2-1 mutants compared to wild type R108. Overall, our mutant study has uncovered an important physiological role of a plant ING2 gene in development, flowering, and gene expression, which likely involves an epigenetic mechanism.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Medicago truncatula , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Plantas/metabolismo , Dedos de Zinc PHD , Flores , Medicago truncatula/genética , Medicago truncatula/metabolismo , Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Dominio MADS/genética
2.
BMC Plant Biol ; 20(1): 329, 2020 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-32652925

RESUMEN

BACKGROUND: Flowering time is an important trait for productivity in legumes, which include many food and fodder plants. Medicago truncatula (Medicago) is a model temperate legume used to study flowering time pathways. Like Arabidopsis thaliana (Arabidopsis), its flowering is promoted by extended periods of cold (vernalization, V), followed by warm long day (LD) photoperiods. However, Arabidopsis flowering-time genes such as the FLOWERING LOCUS C (FLC)/ MADS AFFECTING FLOWERING (MAF) clade are missing and CONSTANS-LIKE (CO-LIKE) genes do not appear to have a role in Medicago or Pisum sativum (pea). Another photoperiodic regulator, the red/far red photoreceptor PHYTOCHROME A (PHYA), promotes Arabidopsis flowering by stabilizing the CO protein in LD. Interestingly, despite the absence of CO-LIKE function in pea, PsPHYA plays a key role in promoting LD photoperiodic flowering and plant architecture. Medicago has one homolog of PHYA, MtPHYA, but its function is not known. RESULTS: Genetic analysis of two MtPHYA Tnt1 insertion mutant alleles indicates that MtPHYA has an important role in promoting Medicago flowering and primary stem elongation in VLD and LD and in perception of far-red wavelengths in seedlings. MtPHYA positively regulates the expression of MtE1-like (MtE1L), a homologue of an important legume-specific flowering time gene, E1 in soybean and other Medicago LD-regulated flowering-time gene homologues, including the three FLOWERING LOCUS T-LIKE (FT-LIKE) genes, MtFTa1, MtFTb1 and MtFTb2 and the two FRUITFULL-LIKE (FUL-LIKE) genes MtFULa and MtFULb. MtPHYA also modulates the expression of the circadian clock genes, GIGANTEA (GI) and TIMING OF CAB EXPRESSION 1a (TOC1a). Genetic analyses indicate that Mtphya-1 Mte1l double mutants flowered at the same time as the single mutants. However, Mtphya-1 Mtfta1 double mutants had a weak additive effect in delaying flowering and in reduction of primary axis lengths beyond what was conferred by either of the single mutants. CONCLUSION: MtPHYA has an important role in LD photoperiodic control of flowering, plant architecture and seedling de-etiolation under far-red wavelengths in Medicago. It promotes the expression of LD-induced flowering time genes and modulates clock-related genes. In addition to MtFTa1, MtPHYA likely regulates other targets during LD floral induction in Medicago.


Asunto(s)
Relojes Circadianos/genética , Medicago truncatula/genética , Fitocromo A/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Flores/fisiología , Medicago truncatula/crecimiento & desarrollo , Medicago truncatula/fisiología , Fenotipo , Fotoperiodo , Fitocromo A/genética , Tallos de la Planta/genética , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/fisiología , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/fisiología
3.
J Exp Bot ; 69(20): 4867-4880, 2018 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-30295903

RESUMEN

Medicago flowering, like that of Arabidopsis, is promoted by vernalization and long days, but alternative mechanisms are predicted because Medicago lacks the key regulators CO and FLC. Three Medicago SOC1-like genes, including MtSOC1a, were previously implicated in flowering control, but no legume soc1 mutants with altered flowering were reported. Here, reverse transciption-quantitative PCR (RT-qPCR) indicated that the timing and magnitude of MtSOC1a expression was regulated by the flowering promoter FTa1, while in situ hybridization indicated that MtSOC1a expression increased in the shoot apical meristem during the floral transition. A Mtsoc1a mutant showed delayed flowering and short primary stems. Overexpression of MtSOC1a partially rescued the flowering of Mtsoc1a, but caused a dramatic increase in primary stem height, well before the transition to flowering. Internode cell length correlated with stem height, indicating that MtSOC1a promotes cell elongation in the primary stem. However, application of gibberellin (GA3) caused stem elongation in both the wild type and Mtsoc1a, indicating that the mutant was not defective in gibberellin responsiveness. These results indicate that MtSOC1a may function as a floral integrator gene and promotes primary stem elongation. Overall, this study suggests that apart from some conservation with the Arabidopsis flowering network, MtSOC1a has a novel role in regulating aspects of shoot architecture.


Asunto(s)
Flores/crecimiento & desarrollo , Proteínas de Dominio MADS/genética , Medicago/crecimiento & desarrollo , Medicago/genética , Proteínas de Plantas/genética , Tallos de la Planta/crecimiento & desarrollo , Secuencia de Aminoácidos , Arabidopsis/genética , Flores/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Dominio MADS/química , Proteínas de Dominio MADS/metabolismo , Medicago/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Tallos de la Planta/genética , Alineación de Secuencia
4.
Mol Cell ; 39(2): 282-91, 2010 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-20605502

RESUMEN

RNA-induced silencing complexes (RISCs) play central roles in posttranscriptional gene silencing. In plants, the mechanism of RISC assembly has remained elusive due to the lack of cell-free systems that recapitulate the process. In this report, we demonstrate that plant AGO1 protein synthesized by in vitro translation using an extract of evacuolated tobacco protoplasts incorporates synthetic small interfering RNA (siRNA) and microRNA (miRNA) duplexes to form RISCs that sequester the single-stranded siRNA guide strand and miRNA strand, respectively. The formed RISCs were able to recognize and cleave the complementary target RNAs. In this system, the siRNA duplex was incorporated into HSP90-bound AGO1, and subsequent removal of the passenger strand was triggered by ATP hydrolysis by HSP90. Removal of the siRNA passenger strand required the ribonuclease activity of AGO1, while that of the miRNA star strand did not. Based on these results, the mechanism of plant RISC formation is discussed.


Asunto(s)
Factores Eucarióticos de Iniciación/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Complejos Multiproteicos/metabolismo , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Complejo Silenciador Inducido por ARN/metabolismo , Secuencia de Bases , Sistema Libre de Células/metabolismo , Factores Eucarióticos de Iniciación/genética , Silenciador del Gen/fisiología , Proteínas HSP90 de Choque Térmico/genética , MicroARNs/genética , MicroARNs/metabolismo , Datos de Secuencia Molecular , Complejos Multiproteicos/genética , Proteínas de Plantas/genética , Protoplastos/citología , Protoplastos/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Complejo Silenciador Inducido por ARN/genética , Nicotiana/citología , Nicotiana/genética
5.
Plant J ; 86(2): 145-60, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26947149

RESUMEN

Optimising the timing of flowering contributes to successful sexual reproduction and yield in agricultural plants. FLOWERING LOCUS T (FT) genes, first identified in Arabidopsis thaliana (Arabidopsis), promote flowering universally, but the upstream flowering regulatory pathways can differ markedly among plants. Flowering in the model legume, Medicago truncatula (Medicago) is accelerated by winter cold (vernalisation) followed by long day (LD) photoperiods leading to elevated expression of the floral activator, FT-like gene FTa1. However, Medicago, like some other plants, lacks the activator CONSTANS (CO) and the repressor FLOWERING LOCUS C (FLC) genes which directly regulate FT and are key to LD and vernalisation responses in Arabidopsis. Conversely, Medicago has a VERNALISATION2-LIKE VEFS-box gene (MtVRN2). In Arabidopsis AtVRN2 is a key member of a Polycomb complex involved in stable repression of Arabidopsis FLC after vernalisation. VRN2-like genes have been identified in other eudicot plants, but their function has never been reported. We show that Mtvrn2 mutants bypass the need for vernalisation for early flowering in LD conditions in Medicago. Investigation of the underlying mechanism by transcriptome analysis reveals that Mtvrn2 mutants precociously express FTa1 and other suites of genes including floral homeotic genes. Double-mutant analysis indicates that early flowering is dependent on functional FTa1. The broad significance of our study is that we have demonstrated a function for a VRN2-like VEFS gene beyond the Brassicaceae. In particular, MtVRN2 represses the transition to flowering in Medicago by regulating the onset of expression of the potent floral activator, FTa1.


Asunto(s)
Flores/fisiología , Medicago truncatula/fisiología , Proteínas de Plantas/metabolismo , Proteínas del Grupo Polycomb/metabolismo , Perfilación de la Expresión Génica , Medicago truncatula/genética , Fotoperiodo , Proteínas de Plantas/genética , Proteínas del Grupo Polycomb/genética
6.
Plant J ; 76(4): 580-91, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23964816

RESUMEN

Molecular-genetic control of the flowering time of temperate-climate plants is best understood in Arabidopsis and the cereals wheat and barley. However, key regulators such as FLC and cereal VRN2 are not found in legumes. Therefore, we used forward genetics to identify flowering time genes in the model legume Medicago truncatula (Medicago) which is induced to flower by vernalisation and long-day photoperiods. A screen of a Tnt1 retroelement tagging population yielded two mutants, spring2 and spring3, with a dominant early flowering phenotype. These mutants overexpress the floral activator FTa1 and two candidate downstream flowering genes SOC1a and FULb, similar to the spring1 somaclonal variant that we identified previously. We demonstrate here that an increase in the expression of FTa1, SOC1a and FULb and early flowering does not occur in all conditions in the spring mutants. It depends on long-day photoperiods but not on vernalisation. Isolation of flanking sequence tags and linkage analysis identified retroelement insertions at FTa1 that co-segregated with the early flowering phenotype in all three spring mutants. These were Tnt1 insertions in the FTa1 third intron (spring3) or the 3' intergenic region (spring2) and an endogenous MERE1-4 retroelement in the 3' intergenic region in spring1. Thus the spring mutants form an allelic series of gain-of-function mutations in FTa1 which confer a spring growth habit. The spring retroelement insertions at FTa1 separate long-day input from vernalisation input into FTa1 regulation, but this is not due to large-scale changes in FTa1 DNA methylation or transcript processing in the mutants.


Asunto(s)
Flores/fisiología , Medicago truncatula/genética , Fotoperiodo , Proteínas de Plantas/genética , Retroelementos , Estaciones del Año , Región de Flanqueo 3' , Metilación de ADN , Mutagénesis Insercional , Mutación , Fenotipo
7.
J Exp Bot ; 65(2): 429-42, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24249713

RESUMEN

The MADS-domain transcription factor SHORT VEGETATIVE PHASE plays a key role as a repressor of the transition to flowering and as a regulator of early floral development in Arabidopsis thaliana (Arabidopsis). However, no flowering-time repressors have been functionally identified in the model legume Medicago truncatula (Medicago). In this study, phylogenetic analysis of two closely-related MtSVP-like sequences, MtSVP1 and MtSVP2, showed that their predicted proteins clustered together within the eudicot SVP clade. To determine if the MtSVP-like genes have a role in flowering, they were functionally characterized in Medicago and Arabidopsis. Transcripts of both MtSVP genes were abundant and broadly expressed in vegetative tissues but were detected at much lower levels in flowers in Medicago. Over-expression of the MtSVP genes in Arabidopsis resulted in delayed flowering and flowers with many abnormal phenotypes such as leafy sepals, changes to floral organ number and longer pedicels than the wild type. By contrast, in transgenic Medicago, over-expression of MtSVP1 resulted in alterations to flower development, but did not alter flowering time, suggesting that MtSVP1 may not function to repress the transition to flowering in Medicago.


Asunto(s)
Arabidopsis/genética , Arabidopsis/fisiología , Flores/crecimiento & desarrollo , Flores/genética , Genes de Plantas/genética , Medicago/crecimiento & desarrollo , Medicago/genética , Flores/anatomía & histología , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Mutagénesis Insercional/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Reacción en Cadena en Tiempo Real de la Polimerasa , Retroelementos/genética , Factores de Tiempo
8.
Front Plant Sci ; 15: 1357924, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38469328

RESUMEN

Optimized flowering time is an important trait that ensures successful plant adaptation and crop productivity. SOC1-like genes encode MADS transcription factors, which are known to play important roles in flowering control in many plants. This includes the best-characterized eudicot model Arabidopsis thaliana (Arabidopsis), where SOC1 promotes flowering and functions as a floral integrator gene integrating signals from different flowering-time regulatory pathways. Medicago truncatula (Medicago) is a temperate reference legume with strong genomic and genetic resources used to study flowering pathways in legumes. Interestingly, despite responding to similar floral-inductive cues of extended cold (vernalization) followed by warm long days (VLD), such as in winter annual Arabidopsis, Medicago lacks FLC and CO which are key regulators of flowering in Arabidopsis. Unlike Arabidopsis with one SOC1 gene, multiple gene duplication events have given rise to three MtSOC1 paralogs within the Medicago genus in legumes: one Fabaceae group A SOC1 gene, MtSOC1a, and two tandemly repeated Fabaceae group B SOC1 genes, MtSOC1b and MtSOC1c. Previously, we showed that MtSOC1a has unique functions in floral promotion in Medicago. The Mtsoc1a Tnt1 retroelement insertion single mutant showed moderately delayed flowering in long- and short-day photoperiods, with and without prior vernalization, compared to the wild-type. In contrast, Mtsoc1b Tnt1 single mutants did not have altered flowering time or flower development, indicating that it was redundant in an otherwise wild-type background. Here, we describe the generation of Mtsoc1a Mtsoc1b Mtsoc1c triple mutant lines using CRISPR-Cas9 gene editing. We studied two independent triple mutant lines that segregated plants that did not flower and were bushy under floral inductive VLD. Genotyping indicated that these non-flowering plants were homozygous for the predicted strong mutant alleles of the three MtSOC1 genes. Gene expression analyses using RNA-seq and RT-qPCR indicated that these plants remained vegetative. Overall, the non-flowering triple mutants were dramatically different from the single Mtsoc1a mutant and the Arabidopsis soc1 mutant; implicating multiple MtSOC1 genes in critical overlapping roles in the transition to flowering in Medicago.

9.
Plant Physiol ; 156(4): 2207-24, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21685176

RESUMEN

FLOWERING LOCUS T (FT) genes encode proteins that function as the mobile floral signal, florigen. In this study, we characterized five FT-like genes from the model legume, Medicago (Medicago truncatula). The different FT genes showed distinct patterns of expression and responses to environmental cues. Three of the FT genes (MtFTa1, MtFTb1, and MtFTc) were able to complement the Arabidopsis (Arabidopsis thaliana) ft-1 mutant, suggesting that they are capable of functioning as florigen. MtFTa1 is the only one of the FT genes that is up-regulated by both long days (LDs) and vernalization, conditions that promote Medicago flowering, and transgenic Medicago plants overexpressing the MtFTa1 gene flowered very rapidly. The key role MtFTa1 plays in regulating flowering was demonstrated by the identification of fta1 mutants that flowered significantly later in all conditions examined. fta1 mutants do not respond to vernalization but are still responsive to LDs, indicating that the induction of flowering by prolonged cold acts solely through MtFTa1, whereas photoperiodic induction of flowering involves other genes, possibly MtFTb1, which is only expressed in leaves under LD conditions and therefore might contribute to the photoperiodic regulation of flowering. The role of the MtFTc gene is unclear, as the ftc mutants did not have any obvious flowering-time or other phenotypes. Overall, this work reveals the diversity of the regulation and function of the Medicago FT family.


Asunto(s)
Flores/fisiología , Medicago/fisiología , Proteínas de Plantas/metabolismo , Homología de Secuencia de Aminoácido , Secuencia de Aminoácidos , Arabidopsis/genética , Frío , Flores/genética , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Prueba de Complementación Genética , Medicago/genética , Medicago/crecimiento & desarrollo , Meristema/genética , Datos de Secuencia Molecular , Mutación/genética , Fenotipo , Fotoperiodo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Factores de Tiempo , Regulación hacia Arriba/genética
10.
Protein Expr Purif ; 81(1): 89-95, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21964444

RESUMEN

Tomato mosaic virus (genus, Tobamovirus) is a member of the alphavirus-like superfamily of positive-strand RNA viruses, which include many plant and animal viruses of agronomical and clinical importance. The RNA of alphavirus-like superfamily members encodes replication-associated proteins that contain a putative superfamily 1 helicase domain. To date, a viral three-dimensional superfamily 1 helicase structure has not been solved. For the study reported herein, we expressed tomato mosaic virus replication proteins that contain the putative helicase domain and additional upstream N-terminal residues in Escherichia coli. We found that an additional 155 residues upstream of the N-terminus of the helicase domain were necessary for stability. We developed an efficient procedure for the expression and purification of this fragment and have examined factors that affect its stability. Finally, we also showed that the stable fragment has nucleoside 5'-triphosphatase activity.


Asunto(s)
ARN Helicasas/química , Proteínas Recombinantes/química , Tobamovirus/enzimología , Proteínas Virales/química , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Electroforesis en Gel de Poliacrilamida , Escherichia coli/genética , Datos de Secuencia Molecular , Estabilidad Proteica , Estructura Terciaria de Proteína , ARN Helicasas/genética , ARN Helicasas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tobamovirus/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo
11.
Front Plant Sci ; 10: 1148, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31608091

RESUMEN

Optimizing flowering time is crucial for maximizing crop productivity, but gaps remain in the knowledge of the mechanisms underpinning temperate legume flowering. Medicago, like winter annual Arabidopsis, accelerates flowering after exposure to extended cold (vernalization, V) followed by long-day (LD) photoperiods. In Arabidopsis, photoperiodic flowering is triggered through CO, a photoperiodic switch that directly activates the FT gene encoding a mobile florigen and potent activator of flowering. In Arabidopsis, several CYCLING DOF FACTORs (CDFs), including AtCDF1, act redundantly to repress CO and thus FT expression, until their removal in LD by a blue-light-induced F-BOX1/GIGANTEA (FKF1/GI) complex. Medicago possesses a homolog of FT, MtFTa1, which acts as a strong activator of flowering. However, the regulation of MtFTa1 does not appear to involve a CO-like gene. Nevertheless, work in pea suggests that CDFs may still regulate flowering time in temperate legumes. Here, we analyze the function of Medicago MtCDF genes with a focus on MtCDFd1_1 in flowering time and development. MtCDFd1_1 causes strong delays to flowering when overexpressed in Arabidopsis and shows a cyclical diurnal expression in Medicago with peak expression at dawn, consistent with AtCDF genes like AtCDF1. However, MtCDFd1_1 lacks predicted GI or FKF1 binding domains, indicating possible differences in its regulation from AtCDF1. In Arabidopsis, CDFs act in a redundant manner, and the same is likely true of temperate legumes as no flowering time phenotypes were observed when MtCDFd1_1 or other MtCDFs were knocked out in Medicago Tnt1 lines. Nevertheless, overexpression of MtCDFd1_1 in Medicago plants resulted in late flowering relative to wild type in inductive vernalized long-day (VLD) conditions, but not in vernalized short days (VSDs), rendering them day neutral. Expression of MtCO-like genes was not affected in the transgenic lines, but LD-induced genes MtFTa1, MtFTb1, MtFTb2, and MtSOC1a showed reduced expression. Plants carrying both the Mtfta1 mutation and 35S:MtCDFd1_1 flowered no later than the Mtfta1 plants. This indicates that 35S:MtCDFd1_1 likely influences flowering in VLD via repressive effects on MtFTa1 expression. Overall, our study implicates MtCDF genes in photoperiodic regulation in Medicago by working redundantly to repress FT-like genes, particularly MtFTa1, but in a CO-independent manner, indicating differences from the Arabidopsis model.

12.
Front Genet ; 6: 50, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25745430

RESUMEN

The timing of the transition to flowering is carefully controlled by plants in order to optimize sexual reproduction and the ensuing production of seeds, grains, and fruits. The genetic networks that regulate floral induction are best characterized in the temperate eudicot Arabidopsis in which the florigen gene FT plays a major role in promoting the transition to flowering. Legumes are an important plant group, but less is known about the regulation of their flowering time. In the model legume Medicago truncatula (Medicago), a temperate annual plant like Arabidopsis, flowering is induced by prolonged cold (vernalization) followed by long day lengths (LD). Recent molecular-genetic experiments have revealed that a FT-like gene, MtFTa1, is a central regulator of flowering time in Medicago. Here, we characterize the three Medicago FRUITFULL (FUL) MADS transcription factors, MtFULa, MtFULb, and MtFULc using phylogenetic analyses, gene expression profiling through developmental time courses, and functional analyses in transgenic plants. MtFULa and MtFULb have similarity in sequence and expression profiles under inductive environmental conditions during both vegetative and reproductive development while MtFULc is only up regulated in the apex after flowering in LD conditions. Sustained up regulation of MtFULs requires functional MtFTa1 but their transcript levels are not affected during cold treatment. Overexpression of MtFULa and MtFULb promotes flowering in transgenic Arabidopsis plants with an additional terminal flower phenotype on some 35S:MtFULb plants. An increase in transcript levels of the MtFULs was also observed in Medicago plants overexpressing MtFTa1. Our results suggest that the MtFULs are targets of MtFTa1. Overall, this work highlights the conserved functions of FUL-like genes in promoting flowering and other roles in plant development and thus contributes to our understanding of the genetic control of the flowering process in Medicago.

13.
PLoS One ; 8(1): e53467, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23308229

RESUMEN

To extend our understanding of flowering time control in eudicots, we screened for mutants in the model legume Medicago truncatula (Medicago). We identified an early flowering mutant, spring1, in a T-DNA mutant screen, but spring1 was not tagged and was deemed a somaclonal mutant. We backcrossed the mutant to wild type R108. The F1 plants and the majority of F2 plants were early flowering like spring1, strongly indicating that spring1 conferred monogenic, dominant early flowering. We hypothesized that the spring1 phenotype resulted from over expression of an activator of flowering. Previously, a major QTL for flowering time in different Medicago accessions was located to an interval on chromosome 7 with six candidate flowering-time activators, including a CONSTANS gene, MtCO, and three FLOWERING LOCUS T (FT) genes. Hence we embarked upon linkage mapping using 29 markers from the MtCO/FT region on chromosome 7 on two populations developed by crossing spring1 with Jester. Spring1 mapped to an interval of ∼0.5 Mb on chromosome 7 that excluded MtCO, but contained 78 genes, including the three FT genes. Of these FT genes, only FTa1 was up-regulated in spring1 plants. We then investigated global gene expression in spring1 and R108 by microarray analysis. Overall, they had highly similar gene expression and apart from FTa1, no genes in the mapping interval were differentially expressed. Two MADS transcription factor genes, FRUITFULLb (FULb) and SUPPRESSOR OF OVER EXPRESSION OF CONSTANS1a (SOC1a), that were up-regulated in spring1, were also up-regulated in transgenic Medicago over-expressing FTa1. This suggested that their differential expression in spring1 resulted from the increased abundance of FTa1. A 6255 bp genomic FTa1 fragment, including the complete 5' region, was sequenced, but no changes were observed indicating that the spring1 mutation is not a DNA sequence difference in the FTa1 promoter or introns.


Asunto(s)
Mapeo Cromosómico , Cromosomas de las Plantas , Flores/genética , Regulación de la Expresión Génica de las Plantas , Medicago truncatula/genética , Proteínas de Plantas/genética , Factores de Transcripción/genética , Arabidopsis/genética , ADN Bacteriano , Análisis por Micromatrices , Mutación , Fenotipo , Regiones Promotoras Genéticas , Sitios de Carácter Cuantitativo , Factores de Tiempo
14.
Funct Plant Biol ; 40(12): 1199-1207, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32481188

RESUMEN

Flowering time is an important contributor to plant productivity and yield. Plants integrate flowering signals from a range of different internal and external cues in order to flower and set seed under optimal conditions. Networks of genes controlling flowering time have been uncovered in the flowering models Arabidopsis, wheat, barley and rice. Investigations have revealed important commonalities such as FT genes that promote flowering in all of these plants, as well as regulators that are unique to some of them. FT genes also have functions beyond floral promotion, including acting as floral repressors and having a complex role in woody polycarpic plants such as vines and trees. However, much less is known overall about flowering control in other important groups of plants such as the legumes. This review discusses recent efforts to uncover flowering-time regulators using candidate gene approaches or forward screens for spring early flowering mutants in the legume Medicago truncatula. The results highlight the importance of a Medicago FT gene, FTa1, in flowering-time control. However, the mechanisms by which FTa1 is regulated by environmental signals such as long days (photoperiod) and vernalisation (winter cold) appear to differ from Arabidopsis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA