Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 286(23): 20701-9, 2011 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-21471215

RESUMEN

Large-conductance voltage- and Ca(2+)-dependent K(+) (BK, also known as MaxiK) channels are homo-tetrameric proteins with a broad expression pattern that potently regulate cellular excitability and Ca(2+) homeostasis. Their activation results from the complex synergy between the transmembrane voltage sensors and a large (>300 kDa) C-terminal, cytoplasmic complex (the "gating ring"), which confers sensitivity to intracellular Ca(2+) and other ligands. However, the molecular and biophysical operation of the gating ring remains unclear. We have used spectroscopic and particle-scale optical approaches to probe the metal-sensing properties of the human BK gating ring under physiologically relevant conditions. This functional molecular sensor undergoes Ca(2+)- and Mg(2+)-dependent conformational changes at physiologically relevant concentrations, detected by time-resolved and steady-state fluorescence spectroscopy. The lack of detectable Ba(2+)-evoked structural changes defined the metal selectivity of the gating ring. Neutralization of a high-affinity Ca(2+)-binding site (the "calcium bowl") reduced the Ca(2+) and abolished the Mg(2+) dependence of structural rearrangements. In congruence with electrophysiological investigations, these findings provide biochemical evidence that the gating ring possesses an additional high-affinity Ca(2+)-binding site and that Mg(2+) can bind to the calcium bowl with less affinity than Ca(2+). Dynamic light scattering analysis revealed a reversible Ca(2+)-dependent decrease of the hydrodynamic radius of the gating ring, consistent with a more compact overall shape. These structural changes, resolved under physiologically relevant conditions, likely represent the molecular transitions that initiate the ligand-induced activation of the human BK channel.


Asunto(s)
Calcio/química , Activación del Canal Iónico/fisiología , Canales de Potasio de Gran Conductancia Activados por el Calcio/química , Magnesio/química , Modelos Moleculares , Calcio/metabolismo , Humanos , Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Magnesio/metabolismo , Unión Proteica , Conformación Proteica , Espectrometría de Fluorescencia
2.
J Gen Physiol ; 136(2): 189-202, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20624858

RESUMEN

Large-conductance voltage- and Ca(2+)-activated K(+) (BK(Ca)) channels play a fundamental role in cellular function by integrating information from their voltage and Ca(2+) sensors to control membrane potential and Ca(2+) homeostasis. The molecular mechanism of Ca(2+)-dependent regulation of BK(Ca) channels is unknown, but likely relies on the operation of two cytosolic domains, regulator of K(+) conductance (RCK)1 and RCK2. Using solution-based investigations, we demonstrate that the purified BK(Ca) RCK1 domain adopts an alpha/beta fold, binds Ca(2+), and assembles into an octameric superstructure similar to prokaryotic RCK domains. Results from steady-state and time-resolved spectroscopy reveal Ca(2+)-induced conformational changes in physiologically relevant [Ca(2+)]. The neutralization of residues known to be involved in high-affinity Ca(2+) sensing (D362 and D367) prevented Ca(2+)-induced structural transitions in RCK1 but did not abolish Ca(2+) binding. We provide evidence that the RCK1 domain is a high-affinity Ca(2+) sensor that transduces Ca(2+) binding into structural rearrangements, likely representing elementary steps in the Ca(2+)-dependent activation of human BK(Ca) channels.


Asunto(s)
Calcio/metabolismo , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/metabolismo , Receptores Sensibles al Calcio/metabolismo , Secuencia de Aminoácidos , Humanos , Activación del Canal Iónico/fisiología , Canal de Potasio Kv.1.1/química , Canal de Potasio Kv1.6/química , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/química , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/genética , Potenciales de la Membrana/fisiología , Datos de Secuencia Molecular , Pliegue de Proteína , Estructura Terciaria de Proteína , Receptores Sensibles al Calcio/química , Receptores Sensibles al Calcio/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA