Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Methods ; 180: 19-26, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32061675

RESUMEN

Membrane proteins (MPs) are important drug discovery targets for a wide range of diseases. Conventional detergents such as n-Dodecyl ß-D-maltoside have been used largely and efficiently to solubilize MPs with varying degrees of success concerning MPs functionality and stability. Fluorinated surfactants (FSs) have shown a great potential for the stabilization of various MPs. However, so far only a limited number of reports have demonstrated the ability of FSs to solubilize MPs from biological membranes. We report herein the use of a fluorinated lactobionamide-based detergent named FLAC6 for functional and structural stabilization of membrane proteins. We first demonstrated that FLAC6 efficiently solubilized three membrane proteins i.e. the native adenosine receptor A2AR, a G protein-coupled receptor, and two native transporters AcrB and BmrA. The resulting affinity purified MPs were highly pure, homogenous and aggregates free. Furthermore, the functionality of each MP was well maintained. Finally, striking overstabilization features were observed. Indeed, the Tm of native A2AR, AcrB and BmrA could be improved by 7, ~9 and ~ 23 °C, respectively when FLAC6 was used instead of the reference detergent. This work illustrates that FLAC6 is an efficient tool to maintain structural and functional integrities of different MPs belonging to different classes, providing a new avenue for functional stabilization of highly druggable and challenging membrane proteins involved in unmet medical needs.


Asunto(s)
Detergentes/química , Disacáridos/química , Proteínas de la Membrana/química , Animales , Cromatografía en Gel , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expresión Génica , Halogenación , Proteínas de la Membrana/genética , Proteínas de la Membrana/aislamiento & purificación , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/química , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Purinérgicos P1/química , Receptores Purinérgicos P1/genética , Receptores Purinérgicos P1/metabolismo , Células Sf9 , Solubilidad , Tensoactivos/química
2.
Mol Cell ; 46(2): 136-46, 2012 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-22424775

RESUMEN

The open promoter complex (OC) is a central intermediate during transcription initiation that contains a DNA bubble. Here, we employ single-molecule Förster resonance energy transfer experiments and Nano-Positioning System analysis to determine the three-dimensional architecture of a minimal OC consisting of promoter DNA, including a TATA box and an 11-nucleotide mismatched region around the transcription start site, TATA box-binding protein (TBP), RNA polymerase (Pol) II, and general transcription factor (TF)IIB and TFIIF. In this minimal OC, TATA-DNA and TBP reside above the Pol II cleft between clamp and protrusion domains. Downstream DNA is dynamically loaded into and unloaded from the Pol II cleft at a timescale of seconds. The TFIIB core domain is displaced from the Pol II wall, where it is located in the closed promoter complex. These results reveal large overall structural changes during the initiation-elongation transition, which are apparently accommodated by the intrinsic flexibility of TFIIB.


Asunto(s)
Modelos Genéticos , ARN Polimerasa II/química , Proteínas de Saccharomyces cerevisiae/química , Transcripción Genética , Transferencia Resonante de Energía de Fluorescencia , Regiones Promotoras Genéticas , Saccharomyces cerevisiae/genética , Sitio de Iniciación de la Transcripción
3.
Langmuir ; 35(12): 4287-4295, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30767533

RESUMEN

We report herein the design and synthesis of a novel series of alkyl glycoside detergents consisting of a nonionic polar headgroup that comprises two glucose moieties in a branched arrangement (DG), onto which octane-, decane-, and dodecanethiols were grafted leading to ODG, DDG, and DDDG detergents, respectively. Micellization in aqueous solution was studied by isothermal titration calorimetry, 1H NMR spectroscopy, and surface tensiometry. Critical micellar concentration values were found to decrease by a factor of ∼10 for each pair of methylene groups added to the alkyl chain, ranging from ∼0.05 to 9 mM for DDDG and ODG, respectively. Dynamic light scattering and analytical ultracentrifugation sedimentation velocity experiments were used to investigate the size and composition of the micellar aggregates, showing that the aggregation number significantly increased from ∼40 for ODG to ∼80 for DDDG. All new compounds were able to solubilize membrane proteins (MPs) from bacterial membranes, insect cells, as well as the Madin-Darby canine kidney cells. In particular, native human adenosine receptor (A2AR) and bacterial transporter (BmrA) were solubilized efficiently. Striking thermostability improvements of +13 and +8 °C were observed when ODG and DDG were, respectively, applied to wild-type and full-length A2AR. Taken together, this novel detergent series shows promising detergent potency for solubilization and stabilization of membrane proteins (MPs) and thus makes a valuable addition to the chemical toolbox available for extracting and handling these important but challenging MP targets.


Asunto(s)
Detergentes/química , Glucosa/química , Proteínas de la Membrana/química , Proteínas de la Membrana/aislamiento & purificación , Hidrogenación , Tamaño de la Partícula , Estabilidad Proteica , Propiedades de Superficie
4.
J Org Chem ; 84(17): 10606-10614, 2019 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-31414599

RESUMEN

Four hybrid double-chain surfactants with a maltose polar head were synthesized. The apolar domain consists of a hydrogenated chain, and a partially fluorinated chain made of a propyl hydrogenated spacer terminated by a perfluorinated core of various lengths. Their water solubility was found to be lower than 1 g/L irrespective of the length of both chains. The self-assembling properties of pure hybrids in water were studied by dynamic light scattering and transmission electron microscopy, which revealed the formation of two populations of aggregates with diameters of 8-50 nm and 80-300 nm. When mixed with the classical detergent n-dodecylmaltoside (DDM), the four hybrids were well soluble and formed small mixed micelles. DDM/hybrid mixtures were further evaluated for the extraction of the full-length, wild-type human GPCR adenosine receptor (A2AR), and the bacterial transporter AcrB. The solubilization of A2AR showed extraction efficiencies ranging from 40 to 70%, while that of AcrB reached 60-90%. Finally, three of the hybrids exhibited significant thermostabilization when present as additives. The derivative with a C12-hydrogenated chain and a C4F9-fluorinated chain emerged as the most potent additive exhibiting both good extraction yields of A2AR and AcrB and thermostabilization of A2AR by ∼7 °C.

5.
Methods ; 147: 118-125, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29477816

RESUMEN

Membrane proteins (MP) are stable in their native lipid environment. To enable structural and functional investigations, MP need to be extracted from the membrane. This is a critical step that represents the main obstacle for MP biochemistry and structural biology. General guidelines and rules for membrane protein solubilization remain difficult to establish. This review aims to provide the reader with a comprehensive overview of the general concepts of MP solubilization and stabilization as well as recent advances in detergents innovation. Understanding how solubilization and stabilization are intimately linked is key to facilitate MP isolation toward fundamental structural and functional research as well as drug discovery applications. How to manage the tour de force of destabilizing the lipid bilayer and stabilizing MP at the same time is the holy grail of successful isolation and investigation of such a delicate and fascinating class of proteins.


Asunto(s)
Proteínas de la Membrana/química , Yin-Yang , Detergentes/química , Proteínas de la Membrana/aislamiento & purificación , Estabilidad Proteica , Proteínas Recombinantes/química , Solubilidad
6.
Methods ; 147: 84-94, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29857192

RESUMEN

Fluorinated surfactants have scarcely been explored for the direct extraction of proteins from membranes because fluorination is believed to abrogate detergency. However, we have recently shown that a commercially available fluorinated surfactant readily solubilizes lipid membranes, thereby suggesting that fluorination per se does not interfere with detergent activity. In this work, we developed new fluorinated surfactants that exhibit detergency in terms of both lipid-vesicle solubilization and membrane-protein extraction. The compounds made and tested contain two glucose moieties as polar headgroup, a hydrogenated thioether linker, and a perfluorinated alkyl tail with either 4, 6, or 8 carbon atoms. The physicochemical properties of the micelles formed by the three fluorinated surfactants were evaluated by NMR spectroscopy, surface tensiometry, isothermal titration calorimetry, dynamic light scattering, small-angle X-ray scattering, and analytical ultracentrifugation. At 25 °C, micellization was mainly entropy-driven, and the CMC values were found to decrease with chain length of the fluorinated tail, whereas the aggregation number increased with chain length. Remarkably, all three surfactants were found to solubilize lipid vesicles and extract a broad range of proteins from Escherichia coli membranes. These findings demonstrate, for the first time, that nonionic fluorinated surfactants could be further exploited for the direct extraction and solubilization of membrane proteins.


Asunto(s)
Detergentes/farmacología , Proteínas de la Membrana/aislamiento & purificación , Calorimetría , Halogenación , Proteínas de la Membrana/química , Micelas , Solubilidad
7.
Angew Chem Int Ed Engl ; 57(11): 2948-2952, 2018 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-29377441

RESUMEN

To tackle the problems associated with membrane protein (MP) instability in detergent solutions, we designed a series of glycosyl-substituted dicarboxylate detergents (DCODs) in which we optimized the polar head to clamp the membrane domain by including, on one side, two carboxyl groups that form salt bridges with basic residues abundant at the membrane-cytoplasm interface of MPs and, on the other side, a sugar to form hydrogen bonds. Upon extraction, the DCODs 8 b, 8 c, and 9 b preserved the ATPase function of BmrA, an ATP-binding cassette pump, much more efficiently than reference or recently designed detergents. The DCODs 8 a, 8 b, 8 f, 9 a, and 9 b induced thermal shifts of 20 to 29 °C for BmrA and of 13 to 21 °C for the native version of the G-protein-coupled adenosine receptor A2A R. Compounds 8 f and 8 g improved the diffraction resolution of BmrA crystals from 6 to 4 Å. DCODs are therefore considered to be promising and powerful tools for the structural biology of MPs.


Asunto(s)
Ácidos Carboxílicos/química , Cristalización/métodos , Detergentes/química , Proteínas de la Membrana/química , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/aislamiento & purificación , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/aislamiento & purificación , Cristalografía por Rayos X/métodos , Glicosilación , Enlace de Hidrógeno , Proteínas de la Membrana/aislamiento & purificación , Estabilidad Proteica , Receptores Purinérgicos P1/química , Receptores Purinérgicos P1/aislamiento & purificación
8.
Anal Biochem ; 517: 40-49, 2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-27847172

RESUMEN

Membrane proteins play crucial role in many cellular processes including cell adhesion, cell-cell communication, signal transduction and transport. To better understand the molecular basis of such central biological machines and in order to specifically study their biological and medical role, it is necessary to extract them from their membrane environment. To do so, it is challenging to find the best solubilization condition. Here we describe, a systematic screening method called BMSS (Biotinylated Membranes Solubilization & Separation) that allow screening 96 conditions at once. Streptavidine magnetic beads are used to separate solubilized proteins from remaining biotinylated membranes after solubilization. Relative quantification of dot blots help to select the best conditions to be confirmed by classical ultra-centrifugation and western blot. Classical detergents with different physical-chemical characteristics, novel calixarene based detergents and combination of both, were used for solubilization trials to obtain broad spectrum of conditions. Here, we show the application of BMSS to discover solubilization conditions of a GPCR target (MP-A) and a transporter (MP-B). The selected conditions allowed the solubilization and purification of non-aggregated and homogenous native membrane proteins A and B. Taken together, BMSS represent a rapid, reproducible and high throughput assessment of solubilization toward biochemical/functional characterization, biophysical screening and structural investigations of membrane proteins of high biological and medical relevance.


Asunto(s)
Membrana Celular/química , Detergentes/química , Receptores Acoplados a Proteínas G/química , Humanos , Solubilidad
9.
Protein Expr Purif ; 131: 42-50, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27825980

RESUMEN

Influenza A virus displays one of the highest infection rates of all human viruses and therefore represents a severe human health threat associated with an important economical challenge. Influenza matrix protein 2 (M2) is a membrane protein of the viral envelope that forms a proton selective ion channel. Here we report the expression and native isolation of full length active M2 without mutations or fusions. The ability of the influenza virus to efficiently infect MDCK cells was used to express native M2 protein. Using a Calixarene detergents/surfactants based approach; we were able to solubilize most of M2 from the plasma membrane and purify it. The tetrameric form of native M2 was maintained during the protein preparation. Mass spectrometry shows that M2 was phosphorylated in its cytoplasmic tail (serine 64) and newly identifies an acetylation of the highly conserved Lysine 60. ELISA shows that solubilized and purified M2 was specifically recognized by M2 antibody MAB65 and was able to displace the antibody from M2 MDCK membranes. Using a bilayer voltage clamp measurement assay, we demonstrate a pH dependent proton selective ion channel activity. The addition of the M2 ion channel blocker amantadine allows a total inhibition of the channel activity, illustrating therefore the specificity of purified M2 activity. Taken together, this work shows the production and isolation of a tetrameric and functional native M2 ion channel that will pave the way to structural and functional characterization of native M2, conformational antibody development, small molecules compounds screening towards vaccine treatment.


Asunto(s)
Expresión Génica , Subtipo H1N1 del Virus de la Influenza A , Canales Iónicos , Proteínas de la Matriz Viral , Animales , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Perros , Humanos , Subtipo H1N1 del Virus de la Influenza A/química , Subtipo H1N1 del Virus de la Influenza A/genética , Canales Iónicos/biosíntesis , Canales Iónicos/química , Canales Iónicos/genética , Canales Iónicos/aislamiento & purificación , Células de Riñón Canino Madin Darby , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas de la Matriz Viral/biosíntesis , Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/genética , Proteínas de la Matriz Viral/aislamiento & purificación
10.
Biochem Soc Trans ; 44(3): 838-44, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27284049

RESUMEN

Membrane proteins account for a third of the eukaryotic proteome, but are greatly under-represented in the Protein Data Bank. Unfortunately, recent technological advances in X-ray crystallography and EM cannot account for the poor solubility and stability of membrane protein samples. A limitation of conventional detergent-based methods is that detergent molecules destabilize membrane proteins, leading to their aggregation. The use of orthologues, mutants and fusion tags has helped improve protein stability, but at the expense of not working with the sequence of interest. Novel detergents such as glucose neopentyl glycol (GNG), maltose neopentyl glycol (MNG) and calixarene-based detergents can improve protein stability without compromising their solubilizing properties. Styrene maleic acid lipid particles (SMALPs) focus on retaining the native lipid bilayer of a membrane protein during purification and biophysical analysis. Overcoming bottlenecks in the membrane protein structural biology pipeline, primarily by maintaining protein stability, will facilitate the elucidation of many more membrane protein structures in the near future.


Asunto(s)
Proteínas de la Membrana/química , Proteómica , Animales , Detergentes/química , Humanos , Proteínas de la Membrana/aislamiento & purificación , Estabilidad Proteica , Solubilidad
12.
J Virol ; 88(10): 5242-55, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24574403

RESUMEN

UNLABELLED: To identify novel stimulators of the innate immune system, we constructed a panel of eight HEK293 cell lines double positive for human Toll-like receptors (TLRs) and an NF-κB-inducible reporter gene. Screening of a large variety of compounds and cellular extracts detected a TLR3-activating compound in a microsomal yeast extract. Fractionation of this extract identified an RNA molecule of 4.6 kb, named nucleic acid band 2 (NAB2), that was sufficient to confer the activation of TLR3. Digests with single- and double-strand-specific RNases showed the double-strand nature of this RNA, and its sequence was found to be identical to that of the genome of the double-stranded RNA (dsRNA) L-BC virus of Saccharomyces cerevisiae. A large-scale process of production and purification of this RNA was established on the basis of chemical cell lysis and dsRNA-specific chromatography. NAB2 complexed with the cationic lipid Lipofectin but neither NAB2 nor Lipofectin alone induced the secretion of interleukin-12(p70) [IL-12(p70)], alpha interferon, gamma interferon-induced protein 10, macrophage inflammatory protein 1ß, or IL-6 in human monocyte-derived dendritic cells. While NAB2 activated TLR3, Lipofectin-stabilized NAB2 also signaled via the cytoplasmic sensor for RNA recognition MDA-5. A significant increase of RMA-MUC1 tumor rejection and survival was observed in C57BL/6 mice after prophylactic vaccination with MUC1-encoding modified vaccinia virus Ankara (MVA) and NAB2-Lipofectin. This combination of immunotherapies strongly increased at the injection sites the percentage of infiltrating natural killer (NK) cells and plasmacytoid dendritic cells (pDCs), cell types which can modulate innate and adaptive immune responses. IMPORTANCE: Virus-based cancer vaccines offer a good alternative to the treatment of cancer but could be improved. Starting from a screening approach, we have identified and characterized an unexplored biological molecule with immunomodulatory characteristics which augments the efficacy of an MVA-based immunotherapeutic agent. The immune modulator consists of the purified dsRNA genome isolated from a commercially used yeast strain, NAB2, mixed with a cationic lipid, Lipofectin. NAB2-Lipofectin stimulates the immune system via TLR3 and MDA-5. When it was injected at the MVA vaccination site, the immune modulator increased survival in a preclinical tumor model. We could demonstrate that NAB2-Lipofectin augments the MVA-induced infiltration of natural killer and plasmacytoid dendritic cells. We suggest indirect mechanisms of activation of these cell types by the influence of NAB2-Lipofectin on innate and adaptive immunity. Detailed analysis of cell migration at the vaccine injection site and the appropriate choice of an immune modulator should be considered to achieve the rational improvement of virus vector-based vaccination by immune modulators.


Asunto(s)
Células Dendríticas/inmunología , Factores Inmunológicos/inmunología , Neoplasias/terapia , ARN Bicatenario/inmunología , ARN Viral/inmunología , Saccharomyces cerevisiae/virología , Receptor Toll-Like 3/inmunología , Animales , Línea Celular , Citocinas/metabolismo , Modelos Animales de Enfermedad , Factores Inmunológicos/aislamiento & purificación , Factores Inmunológicos/uso terapéutico , Inmunoterapia/métodos , Ratones , Ratones Endogámicos C57BL , ARN Bicatenario/aislamiento & purificación , ARN Bicatenario/uso terapéutico , ARN Viral/aislamiento & purificación , ARN Viral/uso terapéutico , Análisis de Supervivencia
13.
EMBO J ; 29(4): 717-26, 2010 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-20094031

RESUMEN

Higher-order multi-protein complexes such as RNA polymerase II (Pol II) complexes with transcription initiation factors are often not amenable to X-ray structure determination. Here, we show that protein cross-linking coupled to mass spectrometry (MS) has now sufficiently advanced as a tool to extend the Pol II structure to a 15-subunit, 670 kDa complex of Pol II with the initiation factor TFIIF at peptide resolution. The N-terminal regions of TFIIF subunits Tfg1 and Tfg2 form a dimerization domain that binds the Pol II lobe on the Rpb2 side of the active centre cleft near downstream DNA. The C-terminal winged helix (WH) domains of Tfg1 and Tfg2 are mobile, but the Tfg2 WH domain can reside at the Pol II protrusion near the predicted path of upstream DNA in the initiation complex. The linkers between the dimerization domain and the WH domains in Tfg1 and Tfg2 are located to the jaws and protrusion, respectively. The results suggest how TFIIF suppresses non-specific DNA binding and how it helps to recruit promoter DNA and to set the transcription start site. This work establishes cross-linking/MS as an integrated structure analysis tool for large multi-protein complexes.


Asunto(s)
ARN Polimerasa II/química , Factores de Transcripción TFII/química , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión , Reactivos de Enlaces Cruzados , ADN de Hongos/genética , Humanos , Espectrometría de Masas , Modelos Moleculares , Datos de Secuencia Molecular , Peso Molecular , Complejos Multiproteicos , Multimerización de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína , ARN Polimerasa II/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Homología Estructural de Proteína , Factores de Transcripción TFII/genética
14.
Nat Methods ; 5(11): 965-71, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18849988

RESUMEN

Very often, the positions of flexible domains within macromolecules as well as within macromolecular complexes cannot be determined by standard structural biology methods. To overcome this problem, we developed a method that uses probabilistic data analysis to combine single-molecule measurements with X-ray crystallography data. The method determines not only the most likely position of a fluorescent dye molecule attached to the domain but also the complete three-dimensional probability distribution depicting the experimental uncertainty. With this approach, single-pair fluorescence resonance energy transfer measurements can now be used as a quantitative tool for investigating the position and dynamics of flexible domains within macromolecular complexes. We applied this method to find the position of the 5' end of the nascent RNA exiting transcription elongation complexes of yeast (Saccharomyces cerevisiae) RNA polymerase II and studied the influence of transcription factor IIB on the position of the RNA.


Asunto(s)
Cristalografía por Rayos X/métodos , Nanotecnología/instrumentación , ARN Polimerasa II/metabolismo , ARN/metabolismo , Factor de Transcripción TFIIB/metabolismo , Simulación por Computador , Transferencia Resonante de Energía de Fluorescencia , Modelos Moleculares , Conformación Molecular , Unión Proteica , ARN/biosíntesis , ARN/química , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Factor de Transcripción TFIIB/química
15.
Methods Mol Biol ; 2247: 257-267, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33301122

RESUMEN

Membrane proteins (MPs) are stable in their native lipid environment. To enable structural and functional investigations, MPs need to be extracted from the membrane. This is a critical step that represents the main obstacle for MP biochemistry and structural biology. Here we describe detergent solubilization screening of MPs using dot-blot and Western-blot analyses. Good solubilization conditions are ranked for their best capacity to stabilize MPs using thermal shift assay. The protein functionality is evaluated by radioligand binding (for G-protein-coupled receptor) and ATPase activity (ABC Transporter) and finally the aggregation status as well as protein homogeneity are assessed by Native-polyacrylamide gel, chemical cross-linking, and size exclusion chromatography.


Asunto(s)
Descubrimiento de Drogas , Proteínas de la Membrana/química , Adenosina Trifosfatasas/química , Cromatografía en Gel , Reactivos de Enlaces Cruzados , Detergentes/química , Descubrimiento de Drogas/métodos , Activación Enzimática , Ligandos , Electroforesis en Gel de Poliacrilamida Nativa , Estabilidad Proteica , Solubilidad , Soluciones
16.
Cell Rep ; 32(6): 108025, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32783947

RESUMEN

The α7 nicotinic acetylcholine receptor participates in diverse aspects of brain physiology and disease. Neurons tightly control α7 assembly, which relies upon NACHO, an endoplasmic reticulum (ER)-localized integral membrane protein. By constructing α7 chimeras and mutants, we find that NACHO requires the α7 ectodomain to promote receptor assembly and surface trafficking. Also critical are two amino acids in the α7 second transmembrane domain. NACHO-mediated assembly is independent and separable from that induced by cholinergic ligands or RIC-3 protein, the latter of which acts on the large α7 intracellular loop. Proteomics indicates that NACHO associates with the ER oligosaccharyltransferase machinery and with calnexin. Accordingly, NACHO-mediated effects on α7 assembly and channel function require N-glycosylation and calnexin chaperone activity. These studies identify ER pathways that mediate α7 assembly by NACHO and provide insights into novel pharmacological strategies for these crucial nicotinic receptors.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Animales , Encéfalo/citología , Encéfalo/metabolismo , Glicosilación , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Neuronas/metabolismo , Ratas , Transducción de Señal
17.
Vaccine ; 38(2): 278-287, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31630939

RESUMEN

Influenza A viruses cause major morbidity and represent a severe global health problem. Current influenza vaccines are mainly egg-based products requiring the split of whole viruses using classical detergents such as Triton X-100, which implies certain limitations. Here, we report the use of the novel calixarene-based surfactant CALX133ACE as an alternative to classical detergents for influenza inactivated split vaccine preparation. We confirmed that CALX133ACE-based split HA antigens are fully functional and quantifiable by the "gold standard" method SRID. Additionally, as in the case of the Triton X-100-based split, the CALX133ACE-based split antigens are stable for at least 6 months at 4 °C. Moreover, immunization of mice with CALX133ACE-based split NYMC X-179A (H1N1) antigens harboring 10 to 30-fold less antigen than the commercialized trivalent inactivated vaccines Vaxigrip® or Fluviral® induced comparable efficient protection and neutralizing antibody responses against A(H1N1)pdm09 infection. Taken together, our results demonstrate for the first time the use of a calixarene-based detergent as an efficient splitting agent for the production of optimized influenza split antigens, paving the way for significant improvement in the vaccine manufacturing process, notably with regard to the current regulation on the prohibition of endocrine disruptors, such as Triton X-100.


Asunto(s)
Calixarenos/química , Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/administración & dosificación , Tensoactivos/química , Animales , Anticuerpos Neutralizantes/inmunología , Antígenos Virales/inmunología , Femenino , Humanos , Vacunas contra la Influenza/inmunología , Gripe Humana/prevención & control , Ratones , Ratones Endogámicos BALB C , Vacunación , Vacunas de Productos Inactivados/administración & dosificación , Vacunas de Productos Inactivados/inmunología
18.
Sci Rep ; 10(1): 9069, 2020 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-32494000

RESUMEN

During inflammatory response, blood leukocytes adhere to the endothelium. This process involves numerous adhesion molecules, including a transmembrane chemokine, CX3CL1, which behaves as a molecular cluster. How this cluster assembles and whether this association has a functional role remain unknown. The analysis of CX3CL1 clusters using native electrophoresis and single molecule fluorescence kinetics shows that CX3CL1 is a homo-oligomer of 3 to 7 monomers. Fluorescence recovery after photobleaching assays reveal that the CX3CL1-transmembrane domain peptide self-associates in both cellular and acellular lipid environments, while its random counterpart (i.e. peptide with the same residues in a different order) does not. This strongly indicates that CX3CL1 oligomerization is driven by its intrinsic properties. According to the molecular modeling, CX3CL1 does not associate in compact bundles but rather with monomers linearly assembled side by side. Finally, the CX3CL1 transmembrane peptide inhibits both the CX3CL1 oligomerization and the adhesive function, while its random counterpart does not. This demonstrates that CX3CL1 oligomerization is mandatory for its adhesive potency. Our results provide a new direction to control CX3CL1-dependent cellular adherence in key immune processes.


Asunto(s)
Adhesión Celular/fisiología , Quimiocina CX3CL1/metabolismo , Animales , Células CHO , Células COS , Línea Celular , Chlorocebus aethiops , Cricetulus , Células HEK293 , Humanos , Proteínas de la Membrana/metabolismo
19.
Nat Struct Mol Biol ; 11(7): 616-22, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15195146

RESUMEN

The human general transcription factor TFIIH is involved in both transcription and DNA repair. We have identified a structural domain in the core subunit of TFIIH, p62, which is absolutely required for DNA repair activity through the nucleotide excision repair pathway. Using coimmunoprecipitation experiments, we showed that this activity involves the interaction between the N-terminal domain of p62 and the 3' endonuclease XPG, a major component of the nucleotide excision repair machinery. Furthermore, we reconstituted a functional TFIIH particle with a mutant of p62 lacking the N-terminal domain, showing that this domain is not required for assembly of the TFIIH complex and basal transcription. We solved its three-dimensional structure and found an unpredicted pleckstrin homology and phosphotyrosine binding (PH/PTB) domain, uncovering a new class of activity for this fold.


Asunto(s)
Reparación del ADN , Factores de Transcripción TFII/fisiología , Secuencia de Aminoácidos , Proteínas de Unión al ADN/metabolismo , Endonucleasas , Datos de Secuencia Molecular , Proteínas Nucleares , Pruebas de Precipitina , Conformación Proteica , Homología de Secuencia de Aminoácido , Factor de Transcripción TFIIH , Factores de Transcripción , Factores de Transcripción TFII/química
20.
SLAS Discov ; 24(10): 1009-1017, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31381456

RESUMEN

Membrane proteins (MPs) are important drug discovery targets for a wide range of diseases. However, elucidating the structure and function of native MP is notoriously challenging as their original structure has to be maintained once removed from the lipid bilayer. Conventionally, detergents have been used to solubilize MP with varying degrees of success concerning MP stability. To try to address this, new, more stabilizing agents have been developed, such as calixarene-based detergents and styrene-maleic acid (SMA) copolymer. Calixarene-based detergents exhibit enhanced solubilizing and stabilizing properties compared with conventional detergents, whereas SMA is able to extract MPs with their surrounding lipids, forming a nanodisc structure. Here we report a comparative study using classical detergents, calixarene-based detergents, and SMA to assess the solubilization and stabilization of the human ABC transporter MRP4 (multidrug resistance protein 4/ABCC4). We show that both SMA and calixarene-based detergents have a higher solubility efficiency (at least 80%) than conventional detergents, and show striking overstabilization features of MRP4 (up to 70 °C) with at least 30 °C stability improvement in comparison with the best conventional detergents. These solubilizing agents were successfully used to purify aggregate-free, homogenous and stable MRP4, with sevenfold higher yield for C4C7 calixarene detergent in comparison with SMA. This work paves the way to MRP4 structural and functional investigations and illustrates once more the high value of using calixarene-based detergent or SMA as versatile and efficient tools to study MP, and eventually enable drug discovery of challenging and highly druggable targets.


Asunto(s)
Proteínas Asociadas a Resistencia a Múltiples Medicamentos/química , Humanos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/aislamiento & purificación , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Estabilidad Proteica , Proteínas Recombinantes , Solubilidad , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA