Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-36780202

RESUMEN

To obtain high-efficiency solution-processed organic light-emitting diodes (OLEDs), a hole transport material (HTM) capable of solution processing with excellent charge transport properties is required. In this study, a new vinyl polymer (PmCP) containing hole-transporting 1,3-di(9H-carbazol-9-yl)benzene (mCP) in the side chain was successfully synthesized via radical polymerization. PmCP showed good film-forming ability and thermal stability. Moreover, PmCP has a higher triplet energy value and hole mobility than poly(N-vinylcarbazole) (PVK) used as a reference HTM, which can be applied as a hole transport layer (HTL) in thermally activated delayed fluorescence (TADF) OLEDs, providing green and blue emissions. PmCP-based solution-processable TADF-OLEDs containing green- and blue-emitting layers were easily fabricated without damaging the lower HTL while using ethyl acetate as an orthogonal solvent. The corresponding OLEDs possess high external quantum efficiencies of 29.60% and 11.00% for the green- and blue-emitting devices, respectively. They show superior performances compared to PVK-based devices used as a reference. It was confirmed that PmCP as a solution-processable HTM can replace PVK and is universally applicable to both green- and blue-emitting devices.

2.
Adv Sci (Weinh) ; 10(23): e2302906, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37271888

RESUMEN

Metal-halide perovskite nanocrystals (NCs) have emerged as suitable light-emitting materials for light-emitting diodes (LEDs) and other practical applications. However, LEDs with perovskite NCs undergo environment-induced and ion-migration-induced structural degradation during operation; therefore, novel NC design concepts, such as hermetic sealing of the perovskite NCs, are required. Thus far, viable synthetic conditions to form a robust and hermetic semiconducting shell on perovskite NCs have been rarely reported for LED applications because of the difficulties in the delicate engineering of encapsulation techniques. Herein, a highly bright and durable deep-blue perovskite LED (PeLED) formed by hermetically sealing perovskite NCs with epitaxial ZnS shells is reported. This shell protects the perovskite NCs from the environment, facilitates charge injection/transport, and effectively suppresses interparticle ion migration during the LED operation, resulting in exceptional brightness (2916 cd m-2 ) at 451 nm and a high external quantum efficiency of 1.32%. Furthermore, even in the unencapsulated state, the LED shows a long operational lifetime (T50 ) of 1192 s (≈20 min) in the air. These results demonstrate that the epitaxial and hermetic encapsulation of perovskite NCs is a powerful strategy for fabricating high-performance deep-blue-emitting PeLEDs.

3.
ACS Appl Mater Interfaces ; 14(31): 35969-35977, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35894557

RESUMEN

Recently, various hosts and emitters for solution-processable thermally activated delayed fluorescence organic light-emitting diodes (TADF-OLEDs) have been developed. However, a few studies have been conducted on hole transport materials (HTMs) with differentiated solubility characteristics for manufacturing multilayer OLEDs using a solution process. Here, three new hole transport (HT) styrene polymers, PICz, PPBCz, and PTPCz, were synthesized by radical polymerization. Each of the polymers exhibited increases in their highest occupied molecular orbital (HOMO) levels and better hole-transporting abilities than poly(9-vinylcarbazole) (PVK) as a reference HT polymer. Furthermore, the three HT polymers exhibited different solubilities in toluene. Therefore, it was not possible to use a toluene solution to prepare the emitting layer (EML). To overcome this problem, ethyl acetate (EA), in which the three HT polymers are insoluble, was used as an orthogonal solvent to prepare an EML solution. In EA-solution-processed green-emitting TADF-OLEDs, the three HT-polymer-based devices displayed somewhat low turn-on voltages of 2.8 V and high external quantum efficiencies (EQEs) of >23%. These values are superior to those of a device with a PVK-HT layer. In addition, the devices manufactured with the EA solution showed high-performance reproducibility owing to the stable formation of each layer. In this study, we removed the HTM solubility constraint by dramatically changing the solvent for preparing the EML solution and provided an efficient strategy for the fabrication of OLED devices via solution processes in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA