Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Nano Lett ; 23(1): 380-388, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36382909

RESUMEN

Glide-mirror symmetry in nonsymmorphic crystals can foster the emergence of novel hourglass nodal loop states. Here, we present spectroscopic signatures from angle-resolved photoemission of a predicted topological hourglass semimetal phase in Nb3SiTe6. Linear band crossings are observed at the zone boundary of Nb3SiTe6, which could be the origin of the nontrivial Berry phase and are consistent with a predicted glide quantum spin Hall effect; such linear band crossings connect to form a nodal loop. Furthermore, the saddle-like Fermi surface of Nb3SiTe6 observed in our results helps unveil linear band crossings that could be missed. In situ alkali-metal doping of Nb3SiTe6 also facilitated the observation of other band crossings and parabolic bands at the zone center correlated with accidental nodal loop states. Overall, our results complete the system's band structure, help explain prior Hall measurements, and suggest the existence of a nodal loop at the zone center of Nb3SiTe6.

2.
Phys Chem Chem Phys ; 23(3): 2264-2274, 2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33443243

RESUMEN

Rare earth equiatomic quaternary Heusler (EQH) compounds with chemical formula RXVZ (R = Yb, Lu; X = Fe, Co, Ni; Z = Al, Si) have recently attracted much attention since these materials are easily prepared and they also provide interesting properties for future spintronic applications. In this work, rare Earth-based EQH compounds in three types of structures are theoretically investigated through first-principles calculations based on density functional theory. We find that most of the studied rare Earth EQH compounds exhibit magnetic ground states including ferro-, antiferro-, and ferri-magnetic phases. Owing to the nearly closed shell f orbital in Lu and Yb, the spin magnetic moments mainly come from the 3d transition metal elements. In particular, in the type I structure, a large portion (7 out of 12) of EQH compounds are ferromagnetic half-metals (HMs) with integer magnetic moments ranging from 1 to 3 µB. In the type II structure, YbFeVAl is found to be a rare case of antiferro-magnetic (AFM) half-metal with zero total magnetic moments. Surprisingly, we also discover an unusual magnetic semiconductor LuCoVSi in the type III structure with a total spin magnetic moment of 3.0 µB and an indirect band gap of 0.2 eV. The structural and magnetic stabilities such as formation energy, magnetization energy as well as the mechanical stabilities such as the bulk, shear, and Young's moduli, and Poisson's, and Pugh's ratios of these EQH compounds are also investigated. Most of the studied compounds exhibit mechanical stability under the mechanical stability criteria and show elastic anisotropy. Our work provides guidelines for experimental researchers to synthesize useful materials in future spintronic applications.

3.
Proc Natl Acad Sci U S A ; 113(5): 1180-5, 2016 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-26787914

RESUMEN

Weyl semimetals have attracted worldwide attention due to their wide range of exotic properties predicted in theories. The experimental realization had remained elusive for a long time despite much effort. Very recently, the first Weyl semimetal has been discovered in an inversion-breaking, stoichiometric solid TaAs. So far, the TaAs class remains the only Weyl semimetal available in real materials. To facilitate the transition of Weyl semimetals from the realm of purely theoretical interest to the realm of experimental studies and device applications, it is of crucial importance to identify other robust candidates that are experimentally feasible to be realized. In this paper, we propose such a Weyl semimetal candidate in an inversion-breaking, stoichiometric compound strontium silicide, SrSi2, with many new and novel properties that are distinct from TaAs. We show that SrSi2 is a Weyl semimetal even without spin-orbit coupling and that, after the inclusion of spin-orbit coupling, two Weyl fermions stick together forming an exotic double Weyl fermion with quadratic dispersions and a higher chiral charge of ±2. Moreover, we find that the Weyl nodes with opposite charges are located at different energies due to the absence of mirror symmetry in SrSi2, paving the way for the realization of the chiral magnetic effect. Our systematic results not only identify a much-needed robust Weyl semimetal candidate but also open the door to new topological Weyl physics that is not possible in TaAs.

4.
J Synchrotron Radiat ; 25(Pt 5): 1395-1399, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-30179178

RESUMEN

This work reports an unconventional defect engineering approach using synchrotron-radiation-based X-rays on ceria nanocrystal catalysts of particle sizes 4.4-10.6 nm. The generation of a large number of oxygen-vacancy defects (OVDs), and therefore an effective reduction of cations, has been found in CeO2 catalytic materials bombarded by high-intensity synchrotron X-ray beams of beam size 1.5 mm × 0.5 mm, photon energies of 5.5-7.8 keV and photon fluxes up to 1.53 × 1012 photons s-1. The experimentally observed cation reduction was theoretically explained by a first-principles formation-energy calculation for oxygen vacancy defects. The results clearly indicate that OVD formation is mainly a result of X-ray-excited core holes that give rise to valence holes through electron down conversion in the material. Thermal annealing and subvalent Y-doping were also employed to modulate the efficiency of oxygen escape, providing extra control on the X-ray-induced OVD generating process. Both the core-hole-dominated bond breaking and oxygen escape mechanisms play pivotal roles for efficient OVD formation. This X-ray irradiation approach, as an alternative defect engineering method, can be applied to a wide variety of nanostructured materials for physical-property modification.

5.
Phys Rev Lett ; 119(8): 086801, 2017 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-28952762

RESUMEN

We report the observation of coherent surface states on cubic perovskite oxide SrVO_{3}(001) thin films through spectroscopic-imaging scanning tunneling microscopy. A direct link between the observed quasiparticle interference patterns and the formation of a d_{xy}-derived surface state is supported by first-principles calculations. We show that the apical oxygens on the topmost VO_{2} plane play a critical role in controlling the coherent surface state via modulating orbital state.

6.
Phys Rev Lett ; 119(2): 026404, 2017 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-28753359

RESUMEN

The recent proposal of the type-II Weyl semimetal state has attracted significant interest. In this Letter, we propose the concept of the three-dimensional type-II Dirac fermion and theoretically identify this new symmetry-protected topological state in the large family of transition-metal icosagenides, MA_{3} (M=V, Nb, Ta; A=Al, Ga, In). We show that the VAl_{3} family features a pair of strongly Lorentz-violating type-II Dirac nodes and that each Dirac node can be split into four type-II Weyl nodes with chiral charge ±1 via symmetry breaking. Furthermore, we predict that the Landau level spectrum arising from the type-II Dirac fermions in VAl_{3} is distinct from that of known Dirac or Weyl semimetals. We also demonstrate a topological phase transition from a type-II Dirac semimetal to a quadratic Weyl semimetal or a topological crystalline insulator via crystalline distortions.

7.
Phys Rev Lett ; 119(19): 196403, 2017 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-29219493

RESUMEN

The first Weyl semimetal was recently discovered in the NbP class of compounds. Although the topology of these novel materials has been identified, the surface properties are not yet fully understood. By means of scanning tunneling spectroscopy, we find that NbP's (001) surface hosts a pair of Dirac cones protected by mirror symmetry. Through our high-resolution spectroscopic measurements, we resolve the quantum interference patterns arising from these novel Dirac fermions and reveal their electronic structure, including the linear dispersions. Our data, in agreement with our theoretical calculations, uncover further interesting features of the Weyl semimetal NbP's already exotic surface. Moreover, we discuss the similarities and distinctions between the Dirac fermions here and those in topological crystalline insulators in terms of symmetry protection and topology.

8.
Phys Rev Lett ; 117(26): 266804, 2016 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-28059545

RESUMEN

We combine quasiparticle interference simulation (theory) and atomic resolution scanning tunneling spectromicroscopy (experiment) to visualize the interference patterns on a type-II Weyl semimetal Mo_{x}W_{1-x}Te_{2} for the first time. Our simulation based on first-principles band topology theoretically reveals the surface electron scattering behavior. We identify the topological Fermi arc states and reveal the scattering properties of the surface states in Mo_{0.66}W_{0.34}Te_{2}. In addition, our result reveals an experimental signature of the topology via the interconnectivity of bulk and surface states, which is essential for understanding the unusual nature of this material.

9.
Phys Rev Lett ; 116(6): 066601, 2016 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-26919003

RESUMEN

The recent discovery of the first Weyl semimetal in TaAs provides the first observation of a Weyl fermion in nature. Such a topological semimetal features a novel type of anomalous surface state, the Fermi arc, which connects a pair of Weyl nodes through the boundary of the crystal. Here, we present theoretical calculations of the quasiparticle interference (QPI) patterns that arise from the surface states including the topological Fermi arcs in the Weyl semimetals TaAs and NbP. Most importantly, we discover that the QPI exhibits termination points that are fingerprints of the Weyl nodes in the interference pattern. Our results, for the first time, propose a universal interference signature of the topological Fermi arcs in TaAs, which is fundamental for scanning tunneling microscope (STM) measurements on this prototypical Weyl semimetal compound. More generally, our work provides critical guideline and methodology for STM studies on new Weyl semimetals. Further, the scattering channels revealed by our QPIs are broadly relevant to surface transport and device applications based on Weyl semimetals.

10.
Phys Rev Lett ; 116(6): 066802, 2016 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-26919005

RESUMEN

The recent discovery of the first Weyl semimetal in TaAs provides the first observation of a Weyl fermion in nature and demonstrates a novel type of anomalous surface state, the Fermi arc. Like topological insulators, the bulk topological invariants of a Weyl semimetal are uniquely fixed by the surface states of a bulk sample. Here we present a set of distinct conditions, accessible by angle-resolved photoemission spectroscopy (ARPES), each of which demonstrates topological Fermi arcs in a surface state band structure, with minimal reliance on calculation. We apply these results to TaAs and NbP. For the first time, we rigorously demonstrate a nonzero Chern number in TaAs by counting chiral edge modes on a closed loop. We further show that it is unreasonable to directly observe Fermi arcs in NbP by ARPES within available experimental resolution and spectral linewidth. Our results are general and apply to any new material to demonstrate a Weyl semimetal.

11.
Phys Rev Lett ; 116(9): 096801, 2016 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-26991191

RESUMEN

A Weyl semimetal is a new state of matter that hosts Weyl fermions as quasiparticle excitations. The Weyl fermions at zero energy correspond to points of bulk-band degeneracy, called Weyl nodes, which are separated in momentum space and are connected only through the crystal's boundary by an exotic Fermi arc surface state. We experimentally measure the spin polarization of the Fermi arcs in the first experimentally discovered Weyl semimetal TaAs. Our spin data, for the first time, reveal that the Fermi arcs' spin-polarization magnitude is as large as 80% and lies completely in the plane of the surface. Moreover, we demonstrate that the chirality of the Weyl nodes in TaAs cannot be inferred by the spin texture of the Fermi arcs. The observed nondegenerate property of the Fermi arcs is important for establishing its exact topological nature, which reveals that spins on the arc form a novel type of 2D matter. Additionally, the nearly full spin polarization we observed (∼80%) may be useful in spintronic applications.

12.
Phys Chem Chem Phys ; 17(23): 15131-9, 2015 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-25991582

RESUMEN

Atomic-scale gold clusters were intercalated at the inter-facet corner sites of Pt-shell Ru-core nanocatalysts with near-monolayer shell thickness. We demonstrated that these unique clusters could serve as a drain of valence electrons in the kink region of the core-shell heterojunction. As jointly revealed by density functional theory calculations and valence band spectra, these Au clusters extract core-level electrons to the valence band. They prevent corrosion due to protonation and enhance the tolerance of CO by increasing the electronegativity at the outermost surface of the NCs during the methanol oxidation reaction (MOR). In these circumstances, the retained current density of Pt-shell Ru-core NCs is doubled in a long-term (2 hours) MOR at a fixed voltage (0.5 V vs. SCE) by intercalating these sub-nanometer gold clusters. Such novel structural confinement provides a possible strategy for developing direct-methanol fuel cell (DMFC) modules with high power and stability.

13.
Nano Lett ; 14(5): 2381-6, 2014 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-24745962

RESUMEN

Two-dimensional crystals can be assembled into three-dimensional stacks with atomic layer precision, which have already shown plenty of fascinating physical phenomena and been used for prototype vertical-field-effect-transistors.1,2 In this work, interlayer electron tunneling in stacked high-quality crystalline MoS2 films were investigated. A trilayered MoS2 film was sandwiched between top and bottom electrodes with an adjacent bottom gate, and the discrete energy levels in each layer could be tuned by bias and gate voltages. When the discrete energy levels aligned, a resonant tunneling peak appeared in the current-voltage characteristics. The peak position shifts linearly with perpendicular magnetic field, indicating formation of Landau levels. From this linear dependence, the effective mass and Fermi velocity are determined and are confirmed by electronic structure calculations. These fundamental parameters are useful for exploitation of its unique properties.

14.
Nano Lett ; 14(12): 6749-53, 2014 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-25365704

RESUMEN

The highest-temperature superconductors are electronically inhomogeneous at the nanoscale, suggesting the existence of a local variable that could be harnessed to enhance the superconducting pairing. Here we report the relationship between local doping and local strain in the cuprate superconductor Bi(2)Sr(2)CaCu(2)O(8+x). We use scanning tunneling microscopy to discover that the crucial oxygen dopants are periodically distributed in correlation with local strain. Our picoscale investigation of the intraunit-cell positions of all oxygen dopants provides essential structural input for a complete microscopic theory.


Asunto(s)
Cobre/química , Conductividad Eléctrica , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Modelos Químicos , Simulación por Computador , Módulo de Elasticidad , Calor , Ensayo de Materiales , Resistencia a la Tracción
15.
Nat Mater ; 12(8): 707-13, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23708328

RESUMEN

The Ruddlesden-Popper series of iridates (Srn+1IrnO3n+1) have been the subject of much recent attention due to the anticipation of emergent phenomena arising from the cooperative action of spin-orbit-driven band splitting and Coulomb interactions. However, an ongoing debate over the role of correlations in the formation of the charge gap and a lack of understanding of the effects of doping on the low-energy electronic structure have hindered experimental progress in realizing many of the predicted states. Using scanning tunnelling spectroscopy we map out the spatially resolved density of states in Sr3Ir2O7 (Ir327). We show that its parent compound, argued to exist only as a weakly correlated band insulator, in fact possesses a substantial ~ 130 meV charge excitation gap driven by an interplay between structure, spin-orbit coupling and correlations. We find that single-atom defects are associated with a strong electronic inhomogeneity, creating an important distinction between the intrinsic and spatially averaged electronic structure. Combined with first-principles calculations, our measurements reveal how defects at specific atomic sites transfer spectral weight from higher energies to the gap energies, providing a possible route to obtaining metallic electronic states from the parent insulating states in the iridates.

16.
Adv Mater ; 36(25): e2309172, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38391035

RESUMEN

X-ray circular dichroism, arising from the contrast in X-ray absorption between opposite photon helicities, serves as a spectroscopic tool to measure the magnetization of ferromagnetic materials and identify the handedness of chiral crystals. Antiferromagnets with crystallographic chirality typically lack X-ray magnetic circular dichroism because of time-reversal symmetry, yet exhibit weak X-ray natural circular dichroism. Here, the observation of giant natural circular dichroism in the Ni L3-edge X-ray absorption of Ni3TeO6 is reported, a polar and chiral antiferromagnet with effective time-reversal symmetry. To unravel this intriguing phenomenon, a phenomenological model is proposed that classifies the movement of photons in a chiral crystal within the same symmetry class as that of a magnetic field. The coupling of X-ray polarization with the induced magnetization yields giant X-ray natural circular dichroism, revealing typical ferromagnetic behaviors allowed by the symmetry in an antiferromagnet, i.e., the altermagnetism of Ni3TeO6. The findings provide evidence for the interplay between magnetism and crystal chirality in natural optical activity. Additionally, the first example of a new class of magnetic materials exhibiting circular dichroism is established with time-reversal symmetry.

17.
Nanomaterials (Basel) ; 13(19)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37836286

RESUMEN

Two-dimensional multiferroic (2D) materials have garnered significant attention due to their potential in high-density, low-power multistate storage and spintronics applications. MXenes, a class of 2D transition metal carbides and nitrides, were first discovered in 2011, and have become the focus of research in various disciplines. Our study, utilizing first-principles calculations, examines the lattice structures, and electronic and magnetic properties of nitride MXenes with intrinsic band gaps, including V2NF2, V2NO2, Cr2NF2, Mo2NO2, Mo2NF2, and Mn2NO2. These nitride MXenes exhibit orbital ordering, and in some cases the orbital ordering induces magnetoelastic coupling or magnetoelectric coupling. Most notably, Cr2NF2 is a ferroelastic material with a spiral magnetic ordered phase, and the spiral magnetization propagation vector is coupled with the direction of ferroelastic strain. The ferroelectric phase can exist as an excited state in V2NO2, Cr2NF2, and Mo2NF2, with their magnetic order being coupled with polar displacements through orbital ordering. Our results also suggest that similar magnetoelectric coupling effects persist in the Janus MXenes V8N4O7F, Cr8N4F7O, and Mo8N4F7O. Remarkably, different phases of Mo8N4F7O, characterized by orbital ordering rearrangements, can be switched by applying external strain or an external electric field. Overall, our theoretical findings suggest that nitride MXenes hold promise as 2D multiferroic materials.

18.
Adv Mater ; 35(9): e2207849, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36495592

RESUMEN

Nanolamination of GaN and ZnO layers by atomic layer deposition (ALD) is employed to fabricate GaN-ZnO homogenous solid-solution thin films because it offers more precise control of the stoichiometry. By varying the ALD cycle ratios of GaN:ZnO from 5:10 to 10:5, the (GaN)1- x (ZnO)x films with 0.39 ≦ x ≦ 0.79 are obtained. The formation of solid solution is explained based on the atomic stacking and preferred orientation of the layers of GaN and ZnO. However, the growth rates of GaN and ZnO during the lamination process are different from those of pure GaN and ZnO films. It is found that GaN grows faster on ZnO, whereas ZnO grows slower on GaN. The density functional theory (DFT) calculations are performed using a superlattice model for GaN and ZnO laminated layers fabricated by ALD to understand the difference of density of states (DOS) and evaluate the bandgaps for various atomic configurations in the solid-solution films. The band positions are experimentally defined by ultraviolet photoelectron spectroscopy. Significant bandgap reduction of the solid solutions is observed, which can be explained by the DOS from the DFT calculations. Visible-light-driven photocatalytic hydrogen evolution is conducted to confirm the applicability of the solid-solution films.

19.
Nanoscale Horiz ; 9(1): 148-155, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37938857

RESUMEN

Since two gap superconductivity was discovered in MgB2, research on multigap superconductors has attracted increasing attention because of its intriguing fundamental physics. In MgB2, the Mg atom donates two electrons to the borophene layer, resulting in a stronger gap from the σ band and a weaker gap from the π bond. First-principles calculations demonstrate that the two gap anisotropic superconductivity strongly enhances the transition temperature of MgB2 in comparison with that given by the isotropic model. In this work, we report a three-band (B-σ, B-π, and La-d) two-gap superconductor LaB2 with very high Tc = 30 K by solving the fully anisotropic Migdal-Eliashberg equation. Because of the σ and π-d hybridization on the Fermi surface, the electron-phonon coupling constant λ = 1.5 is significantly larger than the λ = 0.7 of MgB2. Our work paves a new route to enhance the electron-phonon coupling strength of multigap superconductors with d orbitals. On the other hand, our analysis reveals that LaB2 belongs to the weak topological semimetal category, leading to a possible topological superconductor with the highest Tc to date. Moreover, upon applying pressure and/or doping, the topology is tunable between weak and strong with Tc varying from 15 to 30 K, opening up a flexible platform for manipulating topological superconductors.

20.
Nanoscale Horiz ; 8(2): 297, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36602301

RESUMEN

Correction for 'Magnetoconductance modulations due to interlayer tunneling in radial superlattices' by Yu-Jie Zhong et al., Nanoscale Horiz., 2022, 7, 168-173, https://doi.org/10.1039/D1NH00449B.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA