Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Alcohol ; 97: 67-74, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34626787

RESUMEN

Prolonged adolescent binge drinking can disrupt sleep quality and increase the likelihood of alcohol-induced sleep disruptions in young adulthood in rodents and in humans. Striking changes in spine density and morphology have been seen in many cortical and subcortical regions after adolescent alcohol exposure in rats. However, there is little known about the impact of alcohol exposure on dendritic spines in the same motor and sensory cortices that EEG sleep is typically recorded from in rats. The aim of this study is to investigate whether an established model of chronic intermittent ethanol vapor in rats that has been demonstrated to disrupt sleep during adolescence or adulthood, also significantly alters cortical dendritic spine density and morphology. To this end, adolescent and adult Wistar rats were exposed to 5 weeks of ethanol vapor or control air exposure. After a 13-day withdrawal, primary motor cortex (M1) and primary/secondary visual cortex (V1/V2) layer V dendrites were analyzed for differences in spine density and morphology. Spines were classified into four categories (stubby, long, filopodia, and mushroom) based on the spine length and the width of the spine head and neck. The main results indicate an age-specific effect of adolescent intermittent ethanol exposure decreasing spine density in the M1 cortex compared to age-matched controls. Reductions in the density of M1 long-shaped spine subclassifications were seen in adolescent ethanol-exposed rats, but not adult-exposed rats, compared to their air-controls. Irrespective of age, there was an overall reduction produced by ethanol exposure on the density of filopodia and the length of long-shaped spines in V1/V2 cortex as compared to their air-exposed controls. Together, these data add to growing evidence that some cortical circuits are vulnerable to the effects of alcohol during adolescence and begin to elucidate potential mechanisms that may influence brain plasticity following early alcohol use.


Asunto(s)
Etanol , Corteza Visual , Animales , Espinas Dendríticas , Etanol/farmacología , Plasticidad Neuronal , Ratas , Ratas Wistar
2.
eNeuro ; 7(3)2020.
Artículo en Inglés | MEDLINE | ID: mdl-32439714

RESUMEN

Alcohol (ethanol) use disorder is associated with changes in frontal cortical areas including the anterior cingulate cortex (ACC) and orbitofrontal cortex (OFC) that contribute to cognitive deficits, uncontrolled drinking, and relapse. Acute ethanol exposure reduces intrinsic excitability of lateral OFC (lOFC) neurons, while chronic exposure and long-term drinking influence plasticity of intrinsic excitability and function of glutamatergic synapses. However, the time course that these adaptations occur across a history of ethanol drinking is unknown. The current study examined whether short-term and long-term voluntary ethanol consumption using an intermittent access paradigm would alter the biophysical properties of deep-layer pyramidal neurons in the ACC and lOFC. Neuronal spiking varied in the ACC with an initial increase in evoked firing after 1 d of drinking followed by a decrease in firing in mice that consumed ethanol for one week. No difference in lOFC spike number was observed between water controls and 1-d ethanol drinking mice, but mice that consumed ethanol for one week or more showed a significant increase in evoked firing. Voluntary ethanol drinking for 4 weeks also produced a total loss of ethanol inhibition of lOFC neurons. There was no effect of drinking on excitatory or inhibitory synaptic events in ACC or lOFC neurons across all time points in this model. Overall, these results demonstrate that voluntary drinking alters neuronal excitability in the ACC and lOFC in distinct ways and on a different time scale that may contribute to the impairment of prefrontal cortex-dependent behaviors observed in individuals with alcohol use disorder (AUD).


Asunto(s)
Consumo de Bebidas Alcohólicas , Alcoholismo , Potenciales de Acción , Animales , Etanol , Ratones , Ratones Endogámicos C57BL , Corteza Prefrontal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA