Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Bases de datos
Asunto principal
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(20): 13949-13961, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38739624

RESUMEN

Aqueous-phase electrocatalytic hydrogenation of benzaldehyde on Cu leads not only to benzyl alcohol (the carbonyl hydrogenation product), but Cu also catalyzes carbon-carbon coupling to hydrobenzoin. In the absence of an organic substrate, H2 evolution proceeds via the Volmer-Tafel mechanism on Cu/C, with the Tafel step being rate-determining. In the presence of benzaldehyde, the catalyst surface is primarily covered with the organic substrate, while H* coverage is low. Mechanistically, the first H addition to the carbonyl O of an adsorbed benzaldehyde molecule leads to a surface-bound hydroxy intermediate. The hydroxy intermediate then undergoes a second and rate-determining H addition to its α-C to form benzyl alcohol. The H additions occur predominantly via the proton-coupled electron transfer mechanism. In a parallel reaction, the radical α-C of the hydroxy intermediate attacks the electrophilic carbonyl C of a physisorbed benzaldehyde molecule to form the C-C bond, which is rate-determining. The C-C coupling is accompanied by the protonation of the formed alkoxy radical intermediate, coupled with electron transfer from the surface of Cu, to form hydrobenzoin.

2.
Inorg Chem ; 63(1): 129-140, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38109782

RESUMEN

Three new coordination polymers (CPs) constructed from the linker 1,4-di(dithiocarboxylate) (BDDTC2-)─the sulfur-analog of 1,4-benzenedicarboxylate (BDC2-)─together with Mn-, Zn-, and Fe-based inorganic SBUs are reported with description of their structural and electronic properties. Single-crystal X-ray diffraction revealed structural diversity ranging from one-dimensional chains in [Mn(BDDTC)(DMF)2] (1) to two-dimensional (2D) honeycomb sheets observed for [Zn2(BDDTC)3][Zn(DMF)5(H2O)] (2). Gas adsorption experiments confirmed a 3D porous structure for the mixed-valent material [Fe2(BDDTC)2(OH)] (3). 3 contains a 1:1 ratio of Fe2+/3+ ions, as evidenced by 57Fe Mössbauer, X-band EPR, and X-ray absorption spectroscopy. Its empirical formula was established by elemental analysis, thermal gravimetric analysis, infrared vibrational spectroscopy, and X-ray absorption spectroscopy in lieu of elusive single-crystal X-ray diffraction data. In contrast to the Mn- and Zn-based compounds 1 and 2, the Fe2+/3+ CP 3 showed remarkably high electrical conductivity of 5 × 10-3 S cm-1 (according to van der Pauw measurements), which is within the range of semiconducting materials. Overall, our study confirms that sulfur derivatives of typical carboxylate linkers (e.g., BDC) are suitable for the construction of electrically conducting CPs, due to acceptedly higher covalency in metal-ligand bonding compared to the electrically insulating carboxylate CPs or metal-organic frameworks. At the same time, the direct comparison between insulating CPs 1 and 2 with CP 3 emphasizes that the electronic structure of the metal is likewise a crucial aspect to construct electrically conductive materials.

3.
J Am Chem Soc ; 145(32): 17710-17719, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37545395

RESUMEN

The stoichiometric conversion of methane to methanol by Cu-exchanged zeolites can be brought to highest yields by the presence of extraframework Al and high CH4 chemical potentials. Combining theory and experiments, the differences in chemical reactivity of monometallic Cu-oxo and bimetallic Cu-Al-oxo nanoclusters stabilized in zeolite mordenite (MOR) are investigated. Cu-L3 edge X-ray absorption near-edge structure (XANES), infrared (IR), and ultraviolet-visible (UV-vis) spectroscopies, in combination with CH4 oxidation activity tests, support the presence of two types of active clusters in MOR and allow quantification of the relative proportions of each type in dependence of the Cu concentration. Ab initio molecular dynamics (MD) calculations and thermodynamic analyses indicate that the superior performance of materials enriched in Cu-Al-oxo clusters is related to the activity of two µ-oxo bridges in the cluster. Replacing H2O with ethanol in the product extraction step led to the formation of ethyl methyl ether, expanding this way the applicability of these materials for the activation and functionalization of CH4. We show that competition between different ion-exchanged metal-oxo structures during the synthesis of Cu-exchanged zeolites determines the formation of active species, and this provides guidelines for the synthesis of highly active materials for CH4 activation and functionalization.

4.
Angew Chem Int Ed Engl ; 60(17): 9301-9305, 2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33576131

RESUMEN

Supercages of faujasite (FAU)-type zeolites serve as a robust scaffold for stabilizing dinuclear (Mo2 S4 ) and tetranuclear (Mo4 S4 ) molybdenum sulfide clusters. The FAU-encaged Mo4 S4 clusters have a distorted cubane structure similar to the FeMo-cofactor in nitrogenase. Both clusters possess unpaired electrons on Mo atoms. Additionally, they show identical catalytic activity per sulfide cluster. Their catalytic activity is stable (>150 h) for ethene hydrogenation, while layered MoS2 structures deactivate significantly under the same reaction conditions.

5.
Chemistry ; 26(34): 7563-7567, 2020 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-32092206

RESUMEN

Copper-oxo clusters exchanged in zeolite mordenite are active in the stoichiometric conversion of methane to methanol at low temperatures. Here, we show an unprecedented methanol yield per Cu of 0.6, with a 90-95 % selectivity, on a MOR solely containing [Cu3 (µ-O)3 ]2+ active sites. DFT calculations, spectroscopic characterization and kinetic analysis show that increasing the chemical potential of methane enables the utilization of two µ-oxo bridge oxygen out of the three available in the tricopper-oxo cluster structure. Methanol and methoxy groups are stabilized in parallel, leading to methanol desorption in the presence of water.

6.
Chemistry ; 26(34): 7515, 2020 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-32452593

RESUMEN

Invited for the cover of this issue is the collaborative team of researchers from TU Munich, PNNL and TU Delft. Read the full text of the article at 10.1002/chem.202000772.

7.
Phys Chem Chem Phys ; 22(34): 18891-18901, 2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32350496

RESUMEN

Photochemical and electrochemical reactions are highly relevant processes for (i) transforming chemicals (e.g. photoreduction of isopropanol to acetone, electrochemical hydrogenation of benzaldehyde to benzyl alcohol, etc.), and (ii) sustainable energy production (e.g. photoreduction of CO2 to methanol, electrocatalytic H2 evolution reaction). It is therefore of importance to monitor the structural changes and to understand the properties of active sites under photocatalytic and electrocatalytic reaction conditions. Operando X-ray absorption spectroscopy (XAS) provides the means to investigate the nature of active sites under realistic reaction conditions. In this contribution, we describe the successful development of photochemical and electrochemical cells for operando XAS measurements during photocatalytic and electrocatalytic reactions. We have used the operando photochemical cell to monitor the formation of Pt nanoparticles on graphitic carbon nitride nanosheets (g-C3N4-ns) via photodeposition under visible light illumination and observed the formation of highly dispersed Pt nanoparticles with an estimated size of ∼2.5 nm and >60% dispersion. We have also tested this cell to follow the oxidation state of Pt in Pt/TiO2 and Pt/g-C3N4-ns during H2 evolution reaction (HER). We observed that Pt predominantly existed as metallic (reduced) Pt0 species under HER conditions, and that PtOx species were partially reduced from PtIV to Pt0 upon illumination with UV or visible light. The rates of H2 evolution obtained in the photochemical cell (12.1 mmol g-1 h-1 on Pt/TiO2 and 1.01 mmol g-1 h-1 on Pt/g-C3N4-ns) were comparable to that obtained in a standard top-irradiated photoreactor (16.6 mmol g-1 h-1 on Pt/TiO2 and 1.76 mmol g-1 h-1 on Pt/g-C3N4-ns). The operando electrochemical cell was successfully tested to monitor the changes in the structure and oxidation state of Pd in Pd/C electrocatalyst during electrocatalytic hydrogenation (ECH) of benzaldehyde. It was demonstrated that Pd in Pd/C was present in a partially reduced state (∼80% Pd0 and ∼20% PdII) and Pd nanoparticles did not degrade upon the application of an external potential under ECH reaction conditions.

8.
J Am Chem Soc ; 140(14): 4849-4859, 2018 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-29488757

RESUMEN

The active sites for propane dehydrogenation in Ga/H-ZSM-5 with moderate concentrations of tetrahedral aluminum in the lattice were identified to be Lewis-Brønsted acid pairs. With increasing availability, Ga+ and Brønsted acid site concentrations changed inversely, as protons of Brønsted acid sites were exchanged with Ga+. At a Ga/Al ratio of 1/2, the rate of propane dehydrogenation was 2 orders of magnitude higher than with the parent H-ZSM-5, highlighting the extraordinary activity of the Lewis-Brønsted acid pairs. Density functional theory calculations relate the high activity to a bifunctional mechanism that proceeds via heterolytic activation of the propane C-H bond followed by a monomolecular elimination of H2 and desorption of propene.

9.
J Am Chem Soc ; 134(30): 12528-35, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22738117

RESUMEN

Platinum nanoparticles supported on n- and p-type gallium nitride (GaN) are investigated as novel hybrid systems for the electronic control of catalytic activity via electronic interactions with the semiconductor support. In situ oxidation and reduction were studied with high pressure photoemission spectroscopy. The experiments revealed that the underlying wide-band-gap semiconductor has a large influence on the chemical composition and oxygen affinity of supported nanoparticles under X-ray irradiation. For as-deposited Pt cuboctahedra supported on n-type GaN, a higher fraction of oxidized surface atoms was observed compared to cuboctahedral particles supported on p-type GaN. Under an oxygen atmosphere, immediate oxidation was recorded for nanoparticles on n-type GaN, whereas little oxidation was observed for nanoparticles on p-type GaN. Together, these results indicate that changes in the Pt chemical state under X-ray irradiation depend on the type of GaN doping. The strong interaction between the nanoparticles and the support is consistent with charge transfer of X-ray photogenerated free carriers at the semiconductor-nanoparticle interface and suggests that GaN is a promising wide-band-gap support material for photocatalysis and electronic control of catalysis.

10.
JACS Au ; 2(3): 613-622, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35373212

RESUMEN

NaY zeolite-encapsulated dimeric (Mo2S4) and tetrameric (Mo4S4) molybdenum sulfide clusters stabilize hydrogen as hydride binding to Mo atoms. Density functional theory (DFT) calculations and adsorption measurements suggest that stabilization of hydrogen as sulfhydryl (SH) groups, as typical for layered MoS2, is thermodynamically disfavored. Competitive adsorption of H2 and ethene on Mo was probed by quantifying adsorbed CO on partly hydrogen and/or ethene covered samples with IR spectroscopy. During hydrogenation, experiment and theory suggest that Mo is covered predominately with ethene and sparsely with hydride. DFT calculations further predict that, under reaction conditions, each Mo x S y cluster can activate only one H2, suggesting that the entire cluster (irrespective of its nuclearity) acts as one active site for hydrogenation. The nearly identical turnover frequencies (24.7 ± 3.3 molethane·h-1·molcluster -1), apparent activation energies (31-32 kJ·mol-1), and reaction orders (∼0.5 in ethene and ∼1.0 in H2) show that the active sites in both clusters are catalytically indistinguishable.

11.
Nat Commun ; 13(1): 7967, 2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36575187

RESUMEN

The open circuit potential (OCP) established by the quasi-equilibrated electrode reaction of H2 and H3O+(hydr.), complicates catalytic reactions significantly. The hydrogenolysis rate of benzylic alcohol on Pd/C increases 2-3 orders of magnitude with the pH decreasing from 7 to 0.6. The reaction follows a pathway of protonated benzyl alcohol dehydration to a benzylic carbenium ion, followed by a hydride addition to form toluene. The dehydration of protonated benzyl alcohol is kinetic relevent, thus, being enhanced at lower pH. The OCP stabilizes all cationic species in the elementary steps. Particularly, the initial state (benzyl alcohol oxonium ion) is less stabilized than the dehydration transition state and the product (benzylic carbenium), thus, lowering the free energy barrier of the rate-determining step. In accordance, the rate increased with increasingly negative OCP. Beside OCP, an external negative electric potential in an electrocatlaytic system was also demonstrated to enhance the rate in the same way.

12.
Chemphyschem ; 12(6): 1130-4, 2011 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-21438112

RESUMEN

The remarkable differences in the guest diffusivities in nanoporous materials commonly found with the application of different measuring techniques are usually ascribed to the existence of a hierarchy of transport resistances in addition to the diffusional resistance of the pore system and their differing influence due to the differing diffusion path lengths covered by the different measuring techniques. We report diffusion measurements with nanoporous glasses where the existence of such resistances could be avoided. Molecular propagation over diffusion path lengths from hundreds of nanometers up to millimeters was thus found to be controlled by a uniform mechanism, appearing in coinciding results of microscopic and macroscopic diffusion measurement.

13.
JACS Au ; 1(9): 1412-1421, 2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34604851

RESUMEN

Cu-zeolites are able to directly convert methane to methanol via a three-step process using O2 as oxidant. Among the different zeolite topologies, Cu-exchanged mordenite (MOR) shows the highest methanol yields, attributed to a preferential formation of active Cu-oxo species in its 8-MR pores. The presence of extra-framework or partially detached Al species entrained in the micropores of MOR leads to the formation of nearly homotopic redox active Cu-Al-oxo nanoclusters with the ability to activate CH4. Studies of the activity of these sites together with characterization by 27Al NMR and IR spectroscopy leads to the conclusion that the active species are located in the 8-MR side pockets of MOR, and it consists of two Cu ions and one Al linked by O. This Cu-Al-oxo cluster shows an activity per Cu in methane oxidation significantly higher than of any previously reported active Cu-oxo species. In order to determine unambiguously the structure of the active Cu-Al-oxo cluster, we combine experimental XANES of Cu K- and L-edges, Cu K-edge HERFD-XANES, and Cu K-edge EXAFS with TDDFT and AIMD-assisted simulations. Our results provide evidence of a [Cu2AlO3]2+ cluster exchanged on MOR Al pairs that is able to oxidize up to two methane molecules per cluster at ambient pressure.

14.
Nanoscale ; 12(29): 15800-15813, 2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32691790

RESUMEN

Thermal decomposition of metal-organic framework (MOF) precursors is a recent method to create well-dispersed metal centers within active catalyst materials with enhanced stability, as required for dynamic operation conditions in light of challenges caused by the renewable energy supply. Here, we use a hard X-ray-based toolbox of pair distribution function (PDF) and X-ray absorption spectroscopy (XAS) analysis combined with X-ray diffraction and catalytic activity tests to investigate structure-activity correlations of methanation catalysts obtained by thermal decomposition of a Ni(BDC)(PNO) MOF precursor. Increasing the decomposition temperature from 350 to 500 °C resulted in Nifcc nanoparticles with increasing particle sizes, alongside a decrease in Ni2+ species and strain-induced peak broadening. For lower temperatures and inert atmosphere, Ni3C and NiO phases co-existed. A graphitic shell stabilized the Ni particles. Compared to an inert atmosphere, reducing conditions led to larger particles and a faster decomposition of the MOF precursor. Catalytic studies revealed that the decomposition at an intermediate temperature of 375 °C in 5% H2/He is the best set of parameters to obtain high specific surface areas while maintaining particle sizes that feature many active Ni centers for the formation of CH4.

15.
Sci Adv ; 6(19): eaax5331, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32426483

RESUMEN

Unsupported Ni-Mo sulfides have been hydrothermally synthesized and purified by HCl leaching to remove Ni sulfides. Unblocking of active sites by leaching significantly increases the catalytic activity for dibenzothiophene hydrodesulfurization. The site-specific rates of both direct (hydrogenolytic) and hydrogenative desulfurization routes on these active sites that consist of coordinatively unsaturated Ni and sulfhydryl groups were identical for all unsupported sulfides. The hydrogenative desulfurization rates were more than an order of magnitude higher on unsupported Ni-Mo sulfides than on Al2O3-supported catalysts, while they were similar for the direct (hydrogenolytic) desulfurization. The higher activity is concluded to be caused by the lower average electronegativity, i.e., higher base strength and polarity, of Ni-Mo sulfides in the absence of the alumina support and the modified adsorption of reactants enabled by multilayer stacking. Beyond the specific catalytic reaction, the synthesis strategy points to promising scalable routes to sulfide materials broadly applied in hydrogenation and hydrotreating.

16.
J Phys Chem B ; 110(51): 26024-32, 2006 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-17181253

RESUMEN

The role of Pt and the influence of the reaction conditions during lean-rich cycling experiments were studied on a second generation SOx trapping material. The combination of the Generalized 2-D Correlation Analysis, 2-D Sample-Sample Correlation Analysis, and Factor Analysis using the MCR-ALS technique was applied to identify the reactive species. Transient surface sulfate species were formed under oxidative reaction conditions (lean mode) and decomposed under reducing reaction conditions (rich operation mode). The reduction of this species was identified to be the main contribution to the SO2 release observed under dynamic flow conditions. Pt facilitates the formation of sulfates but also catalyzes the reduction of the transient surface sulfate species leading to a higher amount of SO2 released under rich conditions. In the presence of water, this effect was diminished, which was found to be mainly a result of the suppressed formation of surface sulfate species caused by the faster transport of SO2 into the bulk phase of the SOx trapping component (BaCO3). Increasing the time under reducing conditions in the cycles leads to an enhanced reduction of the surface during rich conditions. The presence of water did not influence the bulk type species. It is proposed that for effective SO2 storage materials, strong SOx adsorption sites on the surface, the presence of water, and a short time under reducing conditions are essential.

17.
J Phys Chem B ; 110(22): 10729-37, 2006 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-16771320

RESUMEN

The SO(x) uptake of second generation sulfur trapping materials was studied by in situ IR spectroscopy under lean-rich cycling conditions. The combination of advanced chemometric methods including generalized 2D correlation analysis, 2D sample-sample correlation analysis, and multivariate curve resolution with alternating least squares allowed the detection of the species involved in the storage process. The formation of the bulk sulfate species was always accompanied by the consumption of carbonates. The reduction of a transient surface sulfate species was identified as the key parameter in the storage process under dynamic conditions. Three distinct reaction regimes were differentiated on the industrial materials under SO(x) trapping conditions being imperceptible from conventional spectra.

18.
J Phys Chem B ; 110(11): 5386-94, 2006 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-16539473

RESUMEN

Cobalt-containing mesoporous materials that have been prepared using different procedures have been comparatively characterized by transmission electron microscopy/energy-dispersive X-ray spectroscopy (TEM/EDS), extended X-ray absorption fine structure spectroscopy (EXAFS), X-ray absorption near edge spectroscopy (XANES), and ultraviolet-visible (UV-vis), near-infrared (NIR), and mid-infrared (mid-IR) spectroscopies, and the results provide new insights into the local environment and properties of cobalt in this type of material. TEM/EDS analyses have shown that tetraethyl orthosilicate (TEOS) may be less appropriate as a silicon source during the syntheses of cobalt-containing mesoporous materials, because the distribution of cobalt throughout the framework may become uneven. EXAFS has been determined to be the most suitable method for direct verification of framework incorporation, by identifying silicon as the backscatterer in the second shell. Such a direct verification may not be obtained using UV-vis spectroscopy. From EXAFS analyses, it is also possible to distinguish between surface-bound and framework-incorporated cobalt. There is a good agreement between the results obtained from XANES and UV-vis regarding the coordination symmetry of cobalt in the samples. The presence of cobalt in the silica framework has been determined to create Lewis acid sites, and these acid sites are suggested to be located at tetrahedral cobalt sites at the surface.

19.
J Phys Chem B ; 120(8): 1988-95, 2016 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-26700549

RESUMEN

The mechanism of CO2 adsorption on primary, secondary, and bibasic aminosilanes synthetically functionalized in porous SiO2 was qualitatively and quantitatively investigated by a combination of IR spectroscopy, thermogravimetry, and quantum mechanical modeling. The mode of CO2 adsorption depends particularly on the nature of the amine group and the spacing between the aminosilanes. Primary amines bonded CO2 preferentially through the formation of intermolecular ammonium carbamates, whereas CO2 was predominantly stabilized as carbamic acid, when interacting with secondary amines. Ammonium carbamate formation requires the transfer of the carbamic acid proton to a second primary amine group to form the ammonium ion and hence two (primary) amine groups are required to bind one CO2 molecule. The higher base strength of secondary amines enables the stabilization of carbamic acid, which is thereby hindered to interact further with nearby amine functions, because their association with Si-OH groups (either protonation or hydrogen bonding) does not allow further stabilization of carbamic acid as carbamate. Steric hindrance of the formation of intermolecular ammonium carbamates leads to higher uptake capacities for secondary amines functionalized in porous SiO2 at higher amine densities. In aminosilanes possessing a primary and a secondary amine group, the secondary amine group tends to be protonated by Si-OH groups and therefore does not substantially interact with CO2.

20.
J Phys Chem B ; 109(46): 21842-6, 2005 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-16853837

RESUMEN

In situ S K-edge XANES experiments were carried out on second-generation SO(x)() trapping materials under oxidizing and reducing conditions. The experiments clearly show that the strong release of SO(2) under rich conditions at plug flow conditions is caused by the facilitated reduction of sulfite species on Pt. In the absence of Pt the sulfite species were stable under reducing conditions, while maintaining a similar total SO(2) uptake capacity. Thus, SO(x)() trapping materials without a noble metal are a clearly better option. The enhancing effect on the SO(x)() storage process of water present in the gas mixture is attributed to the formation of a higher sulfate fraction in the samples. The application of the in situ S K-edge XANES technique clearly reveals new information and insights on the behavior of the sulfur in the trapping process compared to that from the ex situ measurements and is therefore essential for designing new SO(x)() trapping materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA