Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Opt Express ; 30(5): 7976-7986, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35299549

RESUMEN

We propose an all-dielectric single-layer guided-mode resonance filter (GMRF) operating in the high-frequency terahertz (THz) region. For the fabrication of thin gratings to achieve strong resonance in the high-frequency region, the refractive index and absorption must be small, while the tensile strength must be high. Cyclic olefin copolymer (COC) films have a lower refractive index and absorption than polyethylene terephthalate (PET) films and a higher tensile yield strength than polytetrafluoroethylene (PTFE) films. Therefore, the COC film was found suitable to fabricate a GMRF operating in the high-frequency THz region. We fabricated COC-based single-layer GMRFs with a thickness of 50 µm and grating periods of 500, 400, 300, 200, and 100 µm; the resonance frequencies of the TE0,1 mode were 0.576, 0.712, 0.939, 1.329, and 2.759 THz, respectively. A shorter grating period caused a greater shift of the resonance to a higher frequency. In particular, the COC film enabled the fabrication of a 100-µm grating period with a ridge width of 32 µm and length of 2 mm, enabling the GMRF to operate up to 2.759 THz, which is very high frequency compared to the previous highest frequency of 0.7 THz. These results were in good agreement with a simulation using rigorous coupled-wave analysis.

2.
Opt Express ; 29(23): 37917-37926, 2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34808855

RESUMEN

All-dielectric binary gratings, with and without slab waveguides, are designed to generate polarization-independent guided-mode resonance filters (GMRFs) operating in the THz frequency region using the rigorous coupled-wave analysis (RCWA) method. The filling factor and thickness of the grating were adjusted to have equal resonance frequencies of transverse electric (TE)- and transverse magnetic (TM)-polarized THz beams. The single polarization-independent resonance for a binary grating without a slab waveguide was obtained at 0.459 THz with full width at half maximum (FWHM) values of 8.3 and 8.5 GHz for the TE and TM modes, respectively. Moreover, double-layered polarization-independent resonances for binary gratings with slab waveguides were obtained at 0.369 and 0.442 THz with very high Q-factors of up to 284. This is the first study to propose a polarization-independent GMRF with two resonant frequencies.

3.
Opt Express ; 27(20): 29357-29366, 2019 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-31684672

RESUMEN

We propose a multilayer slab waveguide (SWG) to enhance the resonance of the transmittance with a guided-mode resonance (GMR) filter. The resonance characteristics of the GMR filter were studied in three types according to the method of attaching the grating film to a SWG, which consists of 25 µm thick polyethylene terephthalate (PET) film layers separated by 25 µm air layers. The resonance depth with the multilayer SWG was improved over that of the monolayer SWG because the refractive index and absorption of the multilayer SWG were reduced. However, because resonance with a high Q-factor in the monolayer SWG has a large attenuation loss due to material absorption, the resonance enhancement was insufficient even for the multilayer SWG. We were able to make the resonance depth up to 5.2 times larger than the monolayer SWG in the TE1,1 mode using a five-layer SWG. We verified the enhancements with the multilayer SWG using a finite-difference frequency-domain (FDFD) simulation.

4.
Opt Express ; 27(20): 27514-27522, 2019 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-31684517

RESUMEN

We modified our 910-m long path THz system to increase the signal-to-noise ratio (S/N) with a nanostructure plasmonic THz transmitter (Tx) chip and a seven-mirror array reflector with 1 m diameter. When the THz pulse propagates the 910-m distance in the atmosphere, the S/N is up to 1170:1, which made the THz pulse measurable at a high water vapor density (WVD) of up to 25.2 g/m3. The time shift of the THz pulse according to the WVD measured for each meteorological season was matched well with the theoretical result. Due to the modified long-distance THz system, we were able to measure for the first time the resonances of N2O gas, which is located 455 m away from the Tx and receiver (Rx) chips and contained in a 1.5-m diameter rubber balloon under atmospheric pressure. Seven resonances can be detected except for one overlay of resonant frequency by water vapor.

5.
Opt Express ; 26(22): 29353-29362, 2018 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-30470100

RESUMEN

A variable grating period made of quartz has been applied to fabricate a tunable guided mode resonance (TGMR) filter with transverse-electric (TE) and -magnetic (TM) modes in the terahertz (THz) region. We prepared three TGMR filters with grating periods of 5.0, 3.3, and 1.7 µm/mm over the length of the filter. For the 5.0 µm/mm, the resolution of resonance frequency shift of the TE0,1, TE1.1, and TM0,1 was 3.6, 4.0, and 3.4 GHz/mm, respectively. With a metal slit spacing of 2 mm located in front of the TGMR filter, the movable range of the TGMR was 24 mm, and the resonance frequency could be shifted up to 87, 96, and 82 GHz, where the center frequencies of each resonance were 0.402, 0.579, and 0.460 THz, for the TE0,1, TE1.1, and TM0,1, respectively. Furthermore, because the TGMR and guided mode resonance (GMR) filters are placed independently in the THz beam path, both tunable and fixed resonances can be obtained at the same time in the spectrum.

6.
Opt Express ; 25(21): 25422-25434, 2017 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-29041210

RESUMEN

We measured the atmospheric propagation of ps THz pulses with a 0.4-THz bandwidth through a 910-m distance; the pulse delay corresponded to 255 pulses down the pulse train of the mode-locked ring laser excitation pulses. The complexity of the atmosphere requires the use of the complete theory of Essen and Froome to compare the measured time shifts due to both the dry atmosphere and water vapor with theoretical calculations. A new procedure involving the measurement of phase in the frequency domain is introduced and achieves comparable results for the calculated time shifts, compared to the previous direct measurements of time shifts. When the THz pulses were sequentially measured for a distance of 186 and 910 m at the same weather condition, the time variation due to atmospheric turbulence between the two pulses of the 910 m measurement was up to 4 times larger than that between the two pulses of the 186 m measurement. THz long path WVD studies are necessary to evaluate proposed applications in the atmosphere, such as communications and monitoring pollutants and dangerous gases.

7.
Opt Express ; 24(6): 6136-44, 2016 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-27136807

RESUMEN

We present experimental and simulation studies of enhanced terahertz (THz) guiding properties of curved two-wire lines for several surface conditions. When a THz-wave propagates through curved two-wire lines, a rough wire surface with dielectric coating contributes to a lower bending loss compared to a smooth or rough wire surface without coating. Dielectric coating and rough surface confine the THz field to the wire surface making the bending loss low. The guiding property at a curve depth of 30 mm of a rough wire surface with 25-µm-thick coating is improved by 34% compared to that of a smooth wire without coating. Furthermore, computer simulation technology (CST) software visually shows the bending loss as same as the experimental studies.

8.
Opt Express ; 22(14): 16738-44, 2014 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-25090492

RESUMEN

We report on the highly sensitive terahertz measurement of a thin, dielectric layer using two channels formed by inserting a single slit sheet in the parallel-plate waveguides (PPWGs). When a thin layer is applied to coat the upper surface of the channel, the single resonance frequency caused by the two-channel PPWGs is shifted as a result of the layer's properties, including length, thickness, and refractive index. The measured frequency tuning sensitivities (FTS) throughout the 20-mm layer length are 2.41 and -1.95 GHz/mm at the open upper and lower channels, respectively. The experimental results agree with those of theoretical simulations performed using the finite-difference time-domain (FDTD) method.

9.
Opt Express ; 20(28): 29605-12, 2012 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-23388787

RESUMEN

A single groove in a parallel-plate waveguide (PPWG) has been applied to a tunable terahertz (THz) notch filter with a transverse-electromagnetic (TEM) mode. When the air gap between the metal plates of the PPWG is controlled from 60 to 240 µm using a motor controlled translation stage or a piezo-actuator, the resonant frequency of the notch filter is changed from 1.75 up to 0.62 THz, respectively. Therefore, the measured tunable sensitivity of the notch filter increases to 6.28 GHz/µm. The measured resonant frequencies were found to be in good agreement with the calculation using an effective groove depth. Using a finite-difference time-domain (FDTD) simulation, we also demonstrate that the sensitivity of a THz microfluidic sensor can be increased via a small air gap, a narrow groove width, and a deep groove depth.

10.
Opt Express ; 20(6): 6116-23, 2012 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-22418491

RESUMEN

We report experimental and finite-difference time-domain simulation studies on terahertz (THz) characteristics of band gaps by using metal grooves which are located inside the flare parallel-plate waveguide. The vertically localized standing-wave cavity mode (SWCM) between the upper waveguide surface and groove bottom, and the horizontally localized SWCM between two groove side walls (groove cavity) are observed. The E field intensity of the horizontally localized SWCM in grooves is very strongly enchanced which is three order higher than that of the input THz. The 4 band gaps except the Bragg band gap are caused by the π radian delay (out of phase) between the reflected THz field by grooves and the propagated THz field through the air gap. The measurement and simulation results agree well.


Asunto(s)
Metales/química , Refractometría/instrumentación , Resonancia por Plasmón de Superficie/instrumentación , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Radiación Terahertz
11.
Opt Express ; 19(16): 14852-9, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21934846

RESUMEN

We present a tunable notch filter having a wide terahertz (THz) frequency range and a low-pass filter (LPF) having a 0.78 THz cutoff frequency. Single slit and multiple slits are positioned at the center of air gaps in tapered parallel-plate waveguides (TPPWG) to obtain the notch filter and LPF, respectively. The notch filter has a dispersion-free and low-loss transverse magnetic (TM) mode. The Q factor was proved to be 138, and the resonant frequency is easily tunable by adjusting the air gaps between TPPWG. On the other hand, the cut off frequency of the LPF was determined using a Bragg stop band, which depends on slit period. The LPF has a transition width of 68 GHz at the cutoff frequency and a dynamic range of 35 dB at stop bands. In addition, the characteristics of such filters were analyzed using finite-difference time-domain (FDTD) simulations.


Asunto(s)
Técnicas Biosensibles , Metales/química , Espectroscopía de Terahertz/métodos , Aire , Simulación por Computador , Diseño de Equipo , Filtración , Gases , Magnetismo , Refractometría , Factores de Tiempo
12.
J Phys Chem A ; 115(1): 35-8, 2011 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-21142130

RESUMEN

The structural transition from hydroquinone clathrates to crystalline α-form hydroquinone was observed up to the range of 3 THz frequency as a function of temperatures. We found that all three hydroquinone clathrates, CO(2)-, CH(4)-, and CO(2)/CH(4)-loaded hydroquinone clathrates, transform into the α-form hydroquinone at around 102 ± 7 °C. The resonance peak of the CO(2)-loaded hydroquinone clathrate at 2.15 THz decreases with increasing temperature, indicating that CO(2) guest molecules are readily released from the host framework prior to the structural transformation. This reveals that the hydroquinone clathrates may transform into the stable α-form hydroquinone via the metastable form of guest-free clathrate, which depends on guest molecules enclathrated in the cages of the host frameworks. A strong resonance of the α-form hydroquinone at 1.18 THz gradually shifts to the low frequency with increasing temperature and shifts back to the high frequency with decreasing temperature.


Asunto(s)
Hidroquinonas/química , Análisis Espectral , Temperatura , Factores de Tiempo
13.
Sci Rep ; 11(1): 1307, 2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33446732

RESUMEN

In this paper, we propose a terahertz (THz) guided-mode resonance (GMR) notch filter made of a monolithic polyethylene terephthalate (PET) film, which has a monolayer grating structure. The proposed configuration shows both polarization-dependent and polarization-independent notch filter characteristics for the incident THz wave depending on the rotation angle of the second grating film. When the rotation angle is 0°, the filtering strength (transmittance) at resonance frequency changes from 0.4 (0.996) to 99.0% (0.010) according to the incident polarization. The transmittance continuously decreases with increasing rotation angle until 90°. When the rotation angle is 90°, the transmittance converges to 0.065 (± 0.015) independent of the incident wave polarization. When the incident polarization angle ranges from 90° to 180°, paradoxically, the transmittance through the two GMR grating films is greater than the transmittance through only the first GMR grating film due to the enhancement of the vertical component of the THz wave. These results agree well with a calculation using a polar coordinate system.

14.
Opt Express ; 18(2): 1289-95, 2010 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-20173954

RESUMEN

This paper reports an experimental and simulation study of a tapered parallel-plate waveguide (TPPWG) to improve THz coupling to the plate separation gap. The flat- and round-type TPPWG without any silicon lens is compared to the parallel-plate waveguide (PPWG) with a plano-cylindrical silicon lens. The spectrum amplitudes of the input-side TPPWG and the input- and output-side TPPWG both having a 3 degrees slop angle increased about 56% and 103% at 1 THz when compared to that of the PPWG. Since the input- and output-side TPPWG had almost no impedance mismatch to the propagating THz wave, coupling to the waveguide could be improved twice compared with the PPWG.


Asunto(s)
Modelos Teóricos , Dispositivos Ópticos , Refractometría/instrumentación , Transductores , Simulación por Computador , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Radiación Terahertz
15.
Opt Express ; 17(19): 17088-101, 2009 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-19770927

RESUMEN

The Zenneck THz surface wave (Z-TSW) on metals is discussed with respect to its difficulty in generation and measurement. The spatial collapse of the extent of the Z-TSW evanescent field, upon the addition of a sub-wavelength dielectric layer on the metal surface, is explained by a simple model, in good agreement with exact analytical theory. Experimental measurements of the THz surface wave on an aluminum surface covered with a 12.5 microm thick dielectric layer have completely characterized the resultant single-mode dielectric layer THz surface wave (DL-TSW). The measured frequency-dependent exponential fall-off of the evanescent wave from the surface agrees well with theory. The DL-TSW frequency-dependent absorption coefficient, phase velocity, group velocity and group velocity dispersion have been obtained. These guided-wave parameters compare favorably with other guided wave structures.

16.
Opt Express ; 17(19): 17082-7, 2009 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-19770926

RESUMEN

In this study, we have designed, fabricated, and characterized a miniaturized optical fiber-coupled terahertz (THz) endoscope system. The endoscopic system utilized a photoconductive generator and detector driven by a mode-locked Ti:sapphire laser. In reflection mode, the endoscope showed a high signal-to-noise ratio and a wide frequency spectrum similar to the conventional THz time-domain spectroscopic system. The cross section of the endoscope including generator and detector head is (2 x 4 mm) x 6 mm, which is small enough to be inserted into a human body. For a feasibility test, the endoscopic system was used to measure reflective THz signals from the side wall of the mouth, tongue, and palm skin as well as from water for comparison. The absorption and refractive index of the side wall of the mouth and tongue were similar to those of water but those of the palm skin were less than water.


Asunto(s)
Endoscopios , Fibras Ópticas , Espectroscopía de Terahertz/métodos , Humanos , Especificidad de Órganos , Refractometría
17.
Opt Express ; 17(11): 9212-8, 2009 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-19466171

RESUMEN

We present experimental and theoretical studies on terahertz surface plasmon (TSP) propagation on slit and rectangular aperture arrays in an aluminum sheet. Terahertz waves are coupled onto the plasmonic structures via a parallel plate waveguide. Long-lasting oscillations are observed in the temporal pulse shape after propagating through the periodic structure, whose Fourier transformation into the frequency domain results in Bragg-resonance spectral features. We show that the interference between the incident wave and the radiation reflected from both the aperture array and the waveguide block is responsible for this Bragg-resonance behavior. The reflection coefficient for a single slit is deduced to be 0.017 +/- 0.002.


Asunto(s)
Refractometría/instrumentación , Resonancia por Plasmón de Superficie/instrumentación , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Luz , Reproducibilidad de los Resultados , Dispersión de Radiación , Sensibilidad y Especificidad , Radiación Terahertz
18.
Opt Express ; 16(1): 271-8, 2008 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-18521158

RESUMEN

In this study, the coupling properties of a conical copper wire waveguide were investigated in the terahertz (THz) frequency range using theoretical simulations and experiments. Because a conical wire tip has a smaller tip diameter than a cylindrical wire tip, it has a greater THz field density than a cylindrical wire tip. The measured THz pulse increased 4.5 times upon contact with the 30 microm-diameter conical wire tip compared with the THz pulse when a 500 microm-diameter cylindrical wire tip was used. This result agrees well with that of theoretical simulations such as high-frequency structure simulation (HFSS), which is based on the finite element method.


Asunto(s)
Rayos Infrarrojos , Microondas , Radiometría/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Dosis de Radiación , Radiometría/métodos
19.
Sci Rep ; 8(1): 13570, 2018 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-30206273

RESUMEN

In this study we report the first on the terahertz (THz) transmission characteristics of a guided-mode resonance (GMR) filter made of all-dielectric material. Two strong transverse electric (TE) resonance modes, TE0,1 and TE1,1, and one strong transverse magnetic (TM) resonance mode, TM0,1, were detected. The measured resonances can be explained by diffraction from the grating surface of the GMR filter, and by guiding along the inside of the filter (slab waveguide). Because two identical GMR filters were employed to overcome limited grating numbers, the measured Q-factors of the TM0,1, TE1,1, and TM0,1 modes were as high as 62.9, 71.0, and 74.4 respectively. Also, we obtained polarization efficiencies of up to 96.9, 96.3, and 92.9% for the TM0,1, TM1,1, and TM0,1 modes, respectively, when the GMR filter was rotated to 90°. By increasing the incident THz beam angle, one TE resonance can be divided into two TE resonances, and the resonant frequency can be adjusted like a THz tunable resonance filter. Furthermore, when the GMR filters were inserted between Teflon plates, only the TM1,1 mode was perfectly removed. The designed GMR filter has a high Q-factor, tunable filter, good polarizer, and good modulator characteristics. These experimental results were in good agreement with simulation results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA