Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Genes Dev ; 33(23-24): 1657-1672, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31727774

RESUMEN

In obesity, adipose tissue undergoes dynamic remodeling processes such as adipocyte hypertrophy, hypoxia, immune responses, and adipocyte death. However, whether and how invariant natural killer T (iNKT) cells contribute to adipose tissue remodeling are elusive. In this study, we demonstrate that iNKT cells remove unhealthy adipocytes and stimulate the differentiation of healthy adipocytes. In obese adipose tissue, iNKT cells were abundantly found nearby dead adipocytes. FasL-positive adipose iNKT cells exerted cytotoxic effects to eliminate hypertrophic and pro-inflammatory Fas-positive adipocytes. Furthermore, in vivo adipocyte-lineage tracing mice model showed that activation of iNKT cells by alpha-galactosylceramide promoted adipocyte turnover, eventually leading to potentiation of the insulin-dependent glucose uptake ability in adipose tissue. Collectively, our data propose a novel role of adipose iNKT cells in the regulation of adipocyte turnover in obesity.


Asunto(s)
Adipocitos/citología , Tejido Adiposo/citología , Tejido Adiposo/inmunología , Muerte Celular/fisiología , Activación de Linfocitos/fisiología , Células T Asesinas Naturales/fisiología , Obesidad/fisiopatología , Células 3T3 , Adipocitos/inmunología , Adipocitos/metabolismo , Animales , Proliferación Celular , Proteína Ligando Fas/metabolismo , Ratones , Ratones Endogámicos C57BL , Receptor fas/metabolismo
2.
Proc Natl Acad Sci U S A ; 116(24): 11936-11945, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31160440

RESUMEN

Accumulating evidence suggests that subcutaneous and visceral adipose tissues are differentially associated with metabolic disorders. In obesity, subcutaneous adipose tissue is beneficial for metabolic homeostasis because of repressed inflammation. However, the underlying mechanism remains unclear. Here, we demonstrate that γ-aminobutyric acid (GABA) sensitivity is crucial in determining fat depot-selective adipose tissue macrophage (ATM) infiltration in obesity. In diet-induced obesity, GABA reduced monocyte migration in subcutaneous inguinal adipose tissue (IAT), but not in visceral epididymal adipose tissue (EAT). Pharmacological modulation of the GABAB receptor affected the levels of ATM infiltration and adipose tissue inflammation in IAT, but not in EAT, and GABA administration ameliorated systemic insulin resistance and enhanced insulin-dependent glucose uptake in IAT, accompanied by lower inflammatory responses. Intriguingly, compared with adipose-derived stem cells (ADSCs) from EAT, IAT-ADSCs played key roles in mediating GABA responses that repressed ATM infiltration in high-fat diet-fed mice. These data suggest that selective GABA responses in IAT contribute to fat depot-selective suppression of inflammatory responses and protection from insulin resistance in obesity.


Asunto(s)
Tejido Adiposo/metabolismo , Inflamación/metabolismo , Obesidad/metabolismo , Células Madre/metabolismo , Tejido Subcutáneo/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Adipocitos/metabolismo , Adiposidad/genética , Animales , Dieta Alta en Grasa/efectos adversos , Femenino , Humanos , Insulina/metabolismo , Grasa Intraabdominal/metabolismo , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
3.
J Biol Chem ; 293(36): 13974-13988, 2018 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-30042231

RESUMEN

Lipid droplets are specialized cellular organelles that contain neutral lipid metabolites and play dynamic roles in energy homeostasis. Perilipin 1 (Plin1), one of the major lipid droplet-binding proteins, is highly expressed in adipocytes. In mice, Plin1 deficiency impairs peripheral insulin sensitivity, accompanied with reduced fat mass. However, the mechanisms underlying insulin resistance in lean Plin1 knockout (Plin1-/-) mice are largely unknown. The current study demonstrates that Plin1 deficiency promotes inflammatory responses and lipolysis in adipose tissue, resulting in insulin resistance. M1-type adipose tissue macrophages (ATMs) were higher in Plin1-/- than in Plin1+/+ mice on normal chow diet. Moreover, using lipidomics analysis, we discovered that Plin1-/- adipocytes promoted secretion of pro-inflammatory lipid metabolites such as prostaglandins, which potentiated monocyte migration. In lean Plin1-/- mice, insulin resistance was relieved by macrophage depletion with clodronate, implying that elevated pro-inflammatory ATMs might be attributable for insulin resistance under Plin1 deficiency. Together, these data suggest that Plin1 is required to restrain fat loss and pro-inflammatory responses in adipose tissue by reducing futile lipolysis to maintain metabolic homeostasis.


Asunto(s)
Tejido Adiposo/patología , Inflamación/etiología , Metabolismo de los Lípidos , Perilipina-1/deficiencia , Adipocitos/metabolismo , Animales , Resistencia a la Insulina , Lipólisis , Macrófagos/patología , Ratones , Ratones Noqueados
4.
Nat Metab ; 6(1): 94-112, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38216738

RESUMEN

Adipose tissue lipolysis is mediated by cAMP-protein kinase A (PKA)-dependent intracellular signalling. Here, we show that PKA targets p21-activated kinase 4 (PAK4), leading to its protein degradation. Adipose tissue-specific overexpression of PAK4 in mice attenuates lipolysis and exacerbates diet-induced obesity. Conversely, adipose tissue-specific knockout of Pak4 or the administration of a PAK4 inhibitor in mice ameliorates diet-induced obesity and insulin resistance while enhancing lipolysis. Pak4 knockout also increases energy expenditure and adipose tissue browning activity. Mechanistically, PAK4 directly phosphorylates fatty acid-binding protein 4 (FABP4) at T126 and hormone-sensitive lipase (HSL) at S565, impairing their interaction and thereby inhibiting lipolysis. Levels of PAK4 and the phosphorylation of FABP4-T126 and HSL-S565 are enhanced in the visceral fat of individuals with obesity compared to their lean counterparts. In summary, we have uncovered an important role for FABP4 phosphorylation in regulating adipose tissue lipolysis, and PAK4 inhibition may offer a therapeutic strategy for the treatment of obesity.


Asunto(s)
Lipólisis , Esterol Esterasa , Animales , Ratones , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Lipólisis/fisiología , Obesidad/metabolismo , Quinasas p21 Activadas/genética , Quinasas p21 Activadas/metabolismo , Esterol Esterasa/genética , Esterol Esterasa/metabolismo
5.
Nat Commun ; 15(1): 940, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38296968

RESUMEN

In mammals, brown adipose tissue (BAT) and inguinal white adipose tissue (iWAT) execute sequential thermogenesis to maintain body temperature during cold stimuli. BAT rapidly generates heat through brown adipocyte activation, and further iWAT gradually stimulates beige fat cell differentiation upon prolonged cold challenges. However, fat depot-specific regulatory mechanisms for thermogenic activation of two fat depots are poorly understood. Here, we demonstrate that E3 ubiquitin ligase RNF20 orchestrates adipose thermogenesis with BAT- and iWAT-specific substrates. Upon cold stimuli, BAT RNF20 is rapidly downregulated, resulting in GABPα protein elevation by controlling protein stability, which stimulates thermogenic gene expression. Accordingly, BAT-specific Rnf20 suppression potentiates BAT thermogenic activity via GABPα upregulation. Moreover, upon prolonged cold stimuli, iWAT RNF20 is gradually upregulated to promote de novo beige adipogenesis. Mechanistically, iWAT RNF20 mediates NCoR1 protein degradation, rather than GABPα, to activate PPARγ. Together, current findings propose fat depot-specific regulatory mechanisms for temporal activation of adipose thermogenesis.


Asunto(s)
Tejido Adiposo Beige , Tejido Adiposo Pardo , Ubiquitina-Proteína Ligasas , Animales , Humanos , Ratones , Adipocitos Marrones/metabolismo , Tejido Adiposo Beige/metabolismo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Frío , Ligasas/metabolismo , Mamíferos , Ratones Endogámicos C57BL , Obesidad/metabolismo , Termogénesis , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
6.
Nat Metab ; 5(5): 735-759, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37142787

RESUMEN

Lipids are essential metabolites, which function as energy sources, structural components and signalling mediators. Most cells are able to convert carbohydrates into fatty acids, which are often converted into neutral lipids for storage in the form of lipid droplets. Accumulating evidence suggests that lipogenesis plays a crucial role not only in metabolic tissues for systemic energy homoeostasis but also in immune and nervous systems for their proliferation, differentiation and even pathophysiological roles. Thus, excessive or insufficient lipogenesis is closely associated with aberrations in lipid homoeostasis, potentially leading to pathological consequences, such as dyslipidaemia, diabetes, fatty liver, autoimmune diseases, neurodegenerative diseases and cancers. For systemic energy homoeostasis, multiple enzymes involved in lipogenesis are tightly controlled by transcriptional and post-translational modifications. In this Review, we discuss recent findings regarding the regulatory mechanisms, physiological roles and pathological importance of lipogenesis in multiple tissues such as adipose tissue and the liver, as well as the immune and nervous systems. Furthermore, we briefly introduce the therapeutic implications of lipogenesis modulation.


Asunto(s)
Hígado Graso , Lipogénesis , Humanos , Lipogénesis/fisiología , Tejido Adiposo/metabolismo , Ácidos Grasos/metabolismo , Hígado Graso/metabolismo
7.
Nat Commun ; 14(1): 8512, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38129377

RESUMEN

Adipose tissue invariant natural killer T (iNKT) cells are a crucial cell type for adipose tissue homeostasis in obese animals. However, heterogeneity of adipose iNKT cells and their function in adipocyte turnover are not thoroughly understood. Here, we investigate transcriptional heterogeneity in adipose iNKT cells and their hierarchy using single-cell RNA sequencing in lean and obese mice. We report that distinct subpopulations of adipose iNKT cells modulate adipose tissue homeostasis through adipocyte death and birth. We identify KLRG1+ iNKT cells as a unique iNKT cell subpopulation in adipose tissue. Adoptive transfer experiments showed that KLRG1+ iNKT cells are selectively generated within adipose tissue microenvironment and differentiate into a CX3CR1+ cytotoxic subpopulation in obese mice. In addition, CX3CR1+ iNKT cells specifically kill enlarged and inflamed adipocytes and recruit macrophages through CCL5. Furthermore, adipose iNKT17 cells have the potential to secrete AREG, and AREG is involved in stimulating adipose stem cell proliferation. Collectively, our data suggest that each adipose iNKT cell subpopulation plays key roles in the control of adipocyte turnover via interaction with adipocytes, adipose stem cells, and macrophages in adipose tissue.


Asunto(s)
Células T Asesinas Naturales , Ratones , Animales , Células T Asesinas Naturales/metabolismo , Ratones Obesos , Tejido Adiposo/metabolismo , Adipocitos/metabolismo , Obesidad/genética , Obesidad/metabolismo , Ratones Endogámicos C57BL
8.
Cell Rep ; 41(11): 111806, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36516764

RESUMEN

In mammals, brown adipose tissue (BAT) is specialized to conduct non-shivering thermogenesis for survival under cold acclimation. Although emerging evidence suggests that lipid metabolites are essential for heat generation in cold-activated BAT, the underlying mechanisms of lipid uptake in BAT have not been thoroughly understood. Here, we show that very-low-density lipoprotein (VLDL) uptaken by VLDL receptor (VLDLR) plays important roles in thermogenic execution in BAT. Compared with wild-type mice, VLDLR knockout mice exhibit impaired thermogenic features. Mechanistically, VLDLR-mediated VLDL uptake provides energy sources for mitochondrial oxidation via lysosomal processing, subsequently enhancing thermogenic activity in brown adipocytes. Moreover, the VLDL-VLDLR axis potentiates peroxisome proliferator activated receptor (PPAR)ß/δ activity with thermogenic gene expression in BAT. Accordingly, VLDL-induced thermogenic capacity is attenuated in brown-adipocyte-specific PPARß/δ knockout mice. Collectively, these data suggest that the VLDL-VLDLR axis in brown adipocytes is a key factor for thermogenic execution during cold exposure.


Asunto(s)
Tejido Adiposo Pardo , PPAR-beta , Ratones , Animales , Tejido Adiposo Pardo/metabolismo , PPAR-beta/metabolismo , Lipoproteínas VLDL/metabolismo , Termogénesis/genética , Adipocitos Marrones/metabolismo , Ratones Noqueados , Mamíferos
9.
Diabetes ; 71(7): 1373-1387, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35476750

RESUMEN

Excessive hepatic glucose production (HGP) is a key factor promoting hyperglycemia in diabetes. Hepatic cryptochrome 1 (CRY1) plays an important role in maintaining glucose homeostasis by suppressing forkhead box O1 (FOXO1)-mediated HGP. Although downregulation of hepatic CRY1 appears to be associated with increased HGP, the mechanism(s) by which hepatic CRY1 dysregulation confers hyperglycemia in subjects with diabetes is largely unknown. In this study, we demonstrate that a reduction in hepatic CRY1 protein is stimulated by elevated E3 ligase F-box and leucine-rich repeat protein 3 (FBXL3)-dependent proteasomal degradation in diabetic mice. In addition, we found that GSK3ß-induced CRY1 phosphorylation potentiates FBXL3-dependent CRY1 degradation in the liver. Accordingly, in diabetic mice, GSK3ß inhibitors effectively decreased HGP by facilitating the effect of CRY1-mediated FOXO1 degradation on glucose metabolism. Collectively, these data suggest that tight regulation of hepatic CRY1 protein stability is crucial for maintaining systemic glucose homeostasis.


Asunto(s)
Criptocromos , Diabetes Mellitus Experimental , Hiperglucemia , Animales , Criptocromos/genética , Criptocromos/metabolismo , Diabetes Mellitus Experimental/metabolismo , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Gluconeogénesis/fisiología , Glucosa/metabolismo , Glucosa/farmacología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Hiperglucemia/metabolismo , Hígado/metabolismo , Ratones
10.
Nat Commun ; 13(1): 3268, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35672324

RESUMEN

Thermogenic adipocytes generate heat to maintain body temperature against hypothermia in response to cold. Although tight regulation of thermogenesis is required to prevent energy sources depletion, the molecular details that tune thermogenesis are not thoroughly understood. Here, we demonstrate that adipocyte hypoxia-inducible factor α (HIFα) plays a key role in calibrating thermogenic function upon cold and re-warming. In beige adipocytes, HIFα attenuates protein kinase A (PKA) activity, leading to suppression of thermogenic activity. Mechanistically, HIF2α suppresses PKA activity by inducing miR-3085-3p expression to downregulate PKA catalytic subunit α (PKA Cα). Ablation of adipocyte HIF2α stimulates retention of beige adipocytes, accompanied by increased PKA Cα during re-warming after cold stimuli. Moreover, administration of miR-3085-3p promotes beige-to-white transition via downregulation of PKA Cα and mitochondrial abundance in adipocyte HIF2α deficient mice. Collectively, these findings suggest that HIF2α-dependent PKA regulation plays an important role as a thermostat through dynamic remodeling of beige adipocytes.


Asunto(s)
Adipocitos Beige , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/metabolismo , MicroARNs , Adipocitos , Adipocitos Beige/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Frío , Ratones , MicroARNs/metabolismo , Termogénesis/genética
11.
Nat Metab ; 4(7): 918-931, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35788760

RESUMEN

DNA methylation is a crucial epigenetic modification in the establishment of cell-type-specific characteristics. However, how DNA methylation is selectively reprogrammed at adipocyte-specific loci during adipogenesis remains unclear. Here, we show that the transcription factor, C/EBPδ, and the DNA methylation eraser, TET3, cooperatively control adipocyte differentiation. We perform whole-genome bisulfite sequencing to explore the dynamics and regulatory mechanisms of DNA methylation in adipocyte differentiation. During adipogenesis, DNA methylation selectively decreases at adipocyte-specific loci carrying the C/EBP binding motif, which correlates with the activity of adipogenic promoters and enhancers. Mechanistically, we find that C/EBPδ recruits a DNA methylation eraser, TET3, to catalyse DNA demethylation at the C/EBP binding motif and stimulate the expression of key adipogenic genes. Ectopic expression of TET3 potentiates in vitro and in vivo adipocyte differentiation and recovers downregulated adipogenic potential, which is observed in aged mice and humans. Taken together, our study highlights how targeted reprogramming of DNA methylation through cooperative action of the transcription factor C/EBPδ, and the DNA methylation eraser TET3, controls adipocyte differentiation.


Asunto(s)
Adipogénesis , Dioxigenasas , Adipogénesis/genética , Animales , Proteínas Potenciadoras de Unión a CCAAT , Diferenciación Celular/genética , Metilación de ADN , Dioxigenasas/genética , Epigénesis Genética , Humanos , Ratones , Factores de Transcripción/genética
12.
Cell Metab ; 34(3): 458-472.e6, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35021043

RESUMEN

In mammals, white adipose tissues are largely divided into visceral epididymal adipose tissue (EAT) and subcutaneous inguinal adipose tissue (IAT) with distinct metabolic properties. Although emerging evidence suggests that subpopulations of adipose stem cells (ASCs) would be important to explain fat depot differences, ASCs of two fat depots have not been comparatively investigated. Here, we characterized heterogeneous ASCs and examined the effects of intrinsic and tissue micro-environmental factors on distinct ASC features. We demonstrated that ASC subpopulations in EAT and IAT exhibited different molecular features with three adipogenic stages. ASC transplantation experiments revealed that intrinsic ASC features primarily determined their adipogenic potential. Upon obesogenic stimuli, EAT-specific SDC1+ ASCs promoted fibrotic remodeling, whereas IAT-specific CXCL14+ ASCs suppressed macrophage infiltration. Moreover, IAT-specific BST2high ASCs exhibited a high potential to become beige adipocytes. Collectively, our data broaden the understanding of ASCs with new insights into the origin of white fat depot differences.


Asunto(s)
Adipocitos , Tejido Adiposo , Adipocitos/metabolismo , Adipogénesis , Tejido Adiposo/metabolismo , Animales , Mamíferos , Células Madre/metabolismo , Grasa Subcutánea/metabolismo
13.
Diabetes ; 70(12): 2756-2770, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34521642

RESUMEN

Reactive oxygen species (ROS) are associated with various roles of brown adipocytes. Glucose-6-phosphate dehydrogenase (G6PD) controls cellular redox potentials by producing NADPH. Although G6PD upregulates cellular ROS levels in white adipocytes, the roles of G6PD in brown adipocytes remain elusive. Here, we found that G6PD defect in brown adipocytes impaired thermogenic function through excessive cytosolic ROS accumulation. Upon cold exposure, G6PD-deficient mutant (G6PDmut) mice exhibited cold intolerance and downregulated thermogenic gene expression in brown adipose tissue (BAT). In addition, G6PD-deficient brown adipocytes had increased cytosolic ROS levels, leading to extracellular signal-regulated kinase (ERK) activation. In BAT of G6PDmut mice, administration of antioxidant restored the thermogenic activity by potentiating thermogenic gene expression and relieving ERK activation. Consistently, body temperature and thermogenic execution were rescued by ERK inhibition in cold-exposed G6PDmut mice. Taken together, these data suggest that G6PD in brown adipocytes would protect against cytosolic oxidative stress, leading to cold-induced thermogenesis.


Asunto(s)
Adipocitos Marrones/metabolismo , Glucosafosfato Deshidrogenasa/genética , Especies Reactivas de Oxígeno/metabolismo , Termogénesis/genética , Células 3T3-L1 , Tejido Adiposo Pardo/metabolismo , Animales , Células Cultivadas , Glucosafosfato Deshidrogenasa/metabolismo , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Transgénicos
14.
Diabetes ; 70(1): 182-195, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33046512

RESUMEN

Becn1/Beclin-1 is a core component of the class III phosphatidylinositol 3-kinase required for autophagosome formation and vesicular trafficking. Although Becn1 has been implicated in numerous diseases such as cancer, aging, and neurodegenerative disease, the role of Becn1 in white adipose tissue and related metabolic diseases remains elusive. In this study, we show that adipocyte-specific Becn1 knockout mice develop severe lipodystrophy, leading to adipose tissue inflammation, hepatic steatosis, and insulin resistance. Ablation of Becn1 in adipocytes stimulates programmed cell death in a cell-autonomous manner, accompanied by elevated endoplasmic reticulum (ER) stress gene expression. Furthermore, we observed that Becn1 depletion sensitized mature adipocytes to ER stress, leading to accelerated cell death. Taken together, these data suggest that adipocyte Becn1 would serve as a crucial player for adipocyte survival and adipose tissue homeostasis.


Asunto(s)
Adipocitos/metabolismo , Tejido Adiposo Blanco/metabolismo , Beclina-1/metabolismo , Resistencia a la Insulina/genética , Lipodistrofia/metabolismo , Enfermedades Metabólicas/metabolismo , Animales , Beclina-1/genética , Hígado Graso/genética , Hígado Graso/metabolismo , Homeostasis/genética , Inflamación/genética , Inflamación/metabolismo , Lipodistrofia/genética , Enfermedades Metabólicas/genética , Ratones , Ratones Noqueados
15.
Nat Commun ; 11(1): 578, 2020 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-31996685

RESUMEN

Lipid droplets (LDs) are key subcellular organelles for regulating lipid metabolism. Although several subcellular organelles participate in lipid metabolism, it remains elusive whether physical contacts between subcellular organelles and LDs might be involved in lipolysis upon nutritional deprivation. Here, we demonstrate that peroxisomes and peroxisomal protein PEX5 mediate fasting-induced lipolysis by stimulating adipose triglyceride lipase (ATGL) translocation onto LDs. During fasting, physical contacts between peroxisomes and LDs are increased by KIFC3-dependent movement of peroxisomes toward LDs, which facilitates spatial translocations of ATGL onto LDs. In addition, PEX5 could escort ATGL to contact points between peroxisomes and LDs in the presence of fasting cues. Moreover, in adipocyte-specific PEX5-knockout mice, the recruitment of ATGL onto LDs was defective and fasting-induced lipolysis is attenuated. Collectively, these data suggest that physical contacts between peroxisomes and LDs are required for spatiotemporal translocation of ATGL, which is escorted by PEX5 upon fasting, to maintain energy homeostasis.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Ayuno/efectos adversos , Gotas Lipídicas/metabolismo , Lipólisis/fisiología , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/metabolismo , Peroxisomas/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Análisis Espacio-Temporal , Células 3T3-L1/metabolismo , Adipocitos/metabolismo , Animales , Caenorhabditis elegans , Señales (Psicología) , Citoesqueleto , Cinesinas/metabolismo , Metabolismo de los Lípidos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nutrientes , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/genética , Peroxisomas/genética , Transducción de Señal
16.
Diabetes ; 69(1): 20-34, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31604693

RESUMEN

Adipose tissue is the key organ coordinating whole-body energy homeostasis. Although it has been reported that ring finger protein 20 (RNF20) regulates lipid metabolism in the liver and kidney, the roles of RNF20 in adipose tissue have not been explored. Here, we demonstrate that RNF20 promotes adipogenesis by potentiating the transcriptional activity of peroxisome proliferator-activated receptor-γ (PPARγ). Under normal chow diet feeding, Rnf20 defective (Rnf20 +/- ) mice exhibited reduced fat mass with smaller adipocytes compared with wild-type littermates. In addition, high-fat diet-fed Rnf20 +/- mice alleviated systemic insulin resistance accompanied by a reduced expansion of fat tissue. Quantitative proteomic analyses revealed significantly decreased levels of PPARγ target proteins in adipose tissue of Rnf20 +/- mice. Mechanistically, RNF20 promoted proteasomal degradation of nuclear corepressor 1 (NCoR1), which led to stimulation of the transcriptional activity of PPARγ. Collectively, these data suggest that RNF20-NCoR1 is a novel axis in adipocyte biology through fine-tuning the transcriptional activity of PPARγ.


Asunto(s)
Adipocitos/metabolismo , Co-Represor 1 de Receptor Nuclear/metabolismo , PPAR gamma/metabolismo , Ubiquitina-Proteína Ligasas/fisiología , Animales , Dieta Alta en Grasa , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Ratones Transgénicos , Obesidad/etiología , Obesidad/genética , Obesidad/metabolismo , Obesidad/patología , PPAR gamma/fisiología , Proteolisis , Transactivadores/genética , Transactivadores/fisiología , Ubiquitina-Proteína Ligasas/genética
17.
Mol Cell Biol ; 39(20)2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31308132

RESUMEN

Adipocytes have unique morphological traits in insulin sensitivity control. However, how the appearance of adipocytes can determine insulin sensitivity has not been understood. Here, we demonstrate that actin cytoskeleton reorganization upon lipid droplet (LD) configurations in adipocytes plays important roles in insulin-dependent glucose uptake by regulating GLUT4 trafficking. Compared to white adipocytes, brown/beige adipocytes with multilocular LDs exhibited well-developed filamentous actin (F-actin) structure and potentiated GLUT4 translocation to the plasma membrane in the presence of insulin. In contrast, LD enlargement and unilocularization in adipocytes downregulated cortical F-actin formation, eventually leading to decreased F-actin-to-globular actin (G-actin) ratio and suppression of insulin-dependent GLUT4 trafficking. Pharmacological inhibition of actin polymerization accompanied with impaired F/G-actin dynamics reduced glucose uptake in adipose tissue and conferred systemic insulin resistance in mice. Thus, our study reveals that adipocyte remodeling with different LD configurations could be an important factor to determine insulin sensitivity by modulating F/G-actin dynamics.


Asunto(s)
Actinas/metabolismo , Adipocitos/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Resistencia a la Insulina , Gotas Lipídicas/metabolismo , Citoesqueleto de Actina/metabolismo , Adipocitos/efectos de los fármacos , Adipocitos/patología , Adipocitos Blancos/metabolismo , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Animales , Respuesta al Choque por Frío , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Glucosa/metabolismo , Masculino , Ratones Endogámicos C57BL , Obesidad/metabolismo , Obesidad/patología , Transporte de Proteínas
18.
Mol Cells ; 41(10): 900-908, 2018 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-30145862

RESUMEN

Insulin resistance is closely associated with metabolic diseases such as type 2 diabetes, dyslipidemia, hypertension and atherosclerosis. Thiazolidinediones (TZDs) have been developed to ameliorate insulin resistance by activation of peroxisome proliferator-activated receptor (PPAR) γ. Although TZDs are synthetic ligands for PPARγ, metabolic outcomes of each TZD are different. Moreover, there are lack of head-to-head comparative studies among TZDs in the aspect of metabolic outcomes. In this study, we analyzed the effects of three TZDs, including lobeglitazone (Lobe), rosiglitazone (Rosi), and pioglitazone (Pio) on metabolic and thermogenic regulation. In adipocytes, Lobe more potently stimulated adipogenesis and insulin-dependent glucose uptake than Rosi and Pio. In the presence of pro-inflammatory stimuli, Lobe efficiently suppressed expressions of pro-inflammatory genes in macrophages and adipocytes. In obese and diabetic db/db mice, Lobe effectively promoted insulin-stimulated glucose uptake and suppressed pro-inflammatory responses in epididymal white adipose tissue (EAT), leading to improve glucose intolerance. Compared to other two TZDs, Lobe enhanced beige adipocyte formation and thermogenic gene expression in inguinal white adipose tissue (IAT) of lean mice, which would be attributable to cold-induced thermogenesis. Collectively, these comparison data suggest that Lobe could relieve insulin resistance and enhance thermogenesis at low-concentration conditions where Rosi and Pio are less effective.


Asunto(s)
Adipogénesis/efectos de los fármacos , Resistencia a la Insulina/fisiología , PPAR gamma/genética , Termogénesis/fisiología , Tiazolidinedionas/uso terapéutico , Animales , Frío , Masculino , Ratones , Tiazolidinedionas/farmacología
19.
Diabetes ; 67(5): 791-804, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29440067

RESUMEN

Beige adipocytes can dissipate energy as heat. Elaborate communication between metabolism and gene expression is important in the regulation of beige adipocytes. Although lipid droplet (LD) binding proteins play important roles in adipose tissue biology, it remains unknown whether perilipin 3 (Plin3) is involved in the regulation of beige adipocyte formation and thermogenic activities. In this study, we demonstrate that Plin3 ablation stimulates beige adipocytes and thermogenic gene expression in inguinal white adipose tissue (iWAT). Compared with wild-type mice, Plin3 knockout mice were cold tolerant and displayed enhanced basal and stimulated lipolysis in iWAT, inducing peroxisome proliferator-activated receptor α (PPARα) activation. In adipocytes, Plin3 deficiency promoted PPARα target gene and uncoupling protein 1 expression and multilocular LD formation upon cold stimulus. Moreover, fibroblast growth factor 21 expression and secretion were upregulated, which was attributable to activated PPARα in Plin3-deficient adipocytes. These data suggest that Plin3 acts as an intrinsic protective factor preventing futile beige adipocyte formation by limiting lipid metabolism and thermogenic gene expression.


Asunto(s)
Adipocitos Beige/metabolismo , Tejido Adiposo Blanco/metabolismo , Gotas Lipídicas/metabolismo , Lipólisis/genética , PPAR alfa/metabolismo , Perilipina-3/genética , Termogénesis/genética , Animales , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación de la Expresión Génica , Ratones , Ratones Noqueados , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA